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If the attacker has access to the measurements, then it is
possible for the attack d;, to cancel some or all of the original
measurement g - so an additive attack can achieve arbitrary
control over the “effective” output of the system.

As our approach leverages a fault-detection approach, we
require an estimator to produce a prediction of the system
behavior. In this work we use the steady state Kalman filter
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where £, € R™ is the estimated state. The observer gain L
is designed to minimize the steady state covariance matrix
P = limyo P, = E[eke{] in the absence of attacks,
where e, ;= xj;, — £, denotes the estimation error. Existence
of P is guaranteed since the pair (F,(C) is assumed to be
detectable [12]. Next, we define the residual sequence r
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the difference between what we actually receive (yx) and
expect to receive (C2y), which evolves according to

Brv1 = F8; + Guy + L(yr. — C%4),

Tk =y — Oy,

er+1 = F —LC e} — LT}k + v — L6k,
ry = Cep +ni + Ok
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In the absence of attacks (i.e., dx = 0), it is straightforward
to show that the r;, random variable falls according to a zero
mean Gaussian distribution with covariance [8]

= E[rprf]= CPCT + R. (6)

In this work, we consider only one detector, the popular
chi-squared detector. Although other alternatives exist, the
chi-squared is easily the dominant choice for most research
and it also provides a transparent choice to highlight the
key messages we wish to communicate in this work. Similar
analysis can be done with these other detector choices using
attacks derived in our other work [7], [8], [13]. In the case
of the chi-squared detector, a quadratic distance measure z
is created to be sensitive to changes in the variance of the
distribution as well as the expected value,
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Since ry ~ N(0, ), the z; random variable, as the sum of
the squares of normally distributed random variables, falls
according to the chi-square distribution. Since r, € RP,
this chi-squared distribution has p degrees of freedom. The
chi-squared detector is summarized as follows: for given a
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threshold o € R~ and the distance measure z;, =71 ~1ry
C
zr <a —> noalarm, ®)
zr>a — alarm: K =k,

alarm time(s) k* are produced. The ~1! factor in the defi-
nition of z;, rescales the distribution (E[zx] = p, E[zx2{] =
2p) so that the threshold « can be designed independent of
the specific statistics of the noises vy and ny; instead, it can
be selected simply based on the number of sensors, p.

It is important to note that because of the infinite support
of noises v, and ny, the distance measure z, distributed
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according to a chi-squared distribution, also has infinite
support. Therefore, even in the absence of attacks, we expect
that the detector will generate alarms because some values
drawn from the distance measure distribution will exceed
the threshold «. Such alarms in the absence of an attack are
called false alarms. Because we can characterize the chi-
squared distribution analytically, we have an exact relation
between the choice of the threshold « and the expected rate
of false alarms A generated by the chi-squared detector.

Lemma 1: [8]. Assume that there are no attacks to the
system and consider chi-squared detector, with threshold « €
Rso, 75 ~ N(0, ).Leta =a* :=2P~1(1—-A*,§), where
P~1(.,-) denotes the inverse regularized lower incomplete
gamma function, then A = A*.

A. Undetected Attacks

Some of the most insidious attacks on industrial control
systems feature attack strategies that manipulate the system
while all the time staying undetected. The effect of the attack
can aggregate during this “stealthy” execution of the attack
and the damage caused by the attack can spread. Past attacks
on industrial control systems seem to favor these undetected
attacks, such as the famous Stuxnet worm incident [14].

In many industrial settings fault detection is accomplished
simply by assigning a collection of static rules (e.g., if a
pressure in a vessel exceeds a given value). These offer little-
to-no protection against stealthy adversarial attacks as the
attack can deviate the actual system state while reporting a
“spoofed” state that is within normal operating conditions.
When detectors are implemented in control systems, these
detectors limit what the attacker is able to accomplish if
he/she seeks to remain undetected. We advance two notions
of undetected attacks (we phrase these with respect to the
chi-squared detector, however, the concept of these attack
classes generalize to other detectors). These attack models
require strong attacker knowledge and access, namely we
assume that the attacker has perfect knowledge of the system
dynamics, the Kalman filter, control inputs, measurements,
and chi-squared procedure. In addition, the attacker has read
and write access to all the sensors at each time step. The goal
of these stealthy attacks is to construct a worst case scenario
to bound the capabilities of attackers.

Zero-alarm attacks generate attack sequences that main-
tain the distance measure at or below the threshold, i.e.,
zr < a. These attacks generate no alarms during the attack.
To satisfy this condition we define the attack as

0p = —Cep —mp + 20y,

9)

where §; € RP is any vector such that 5,€Tc$k < a and 3 s
the symmetric square root of . This attack sequence leads
the distance measure to become

2, = (Cex + 1 +6,) “H(Cep +mp +0x) < . (10)

Since z;, < «, no alarms are raised. A schematic of a zero-
alarm attack is shown in Fig. 1. Although generating no
alarms seems like a successful strategy to avoid detection, it
is important to remember that in the attack-free case alarms
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