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Abstract— As more attention is paid to security in the context
of control systems and as attacks occur to real control systems
throughout the world, it has become clear that some of the
most nefarious attacks are those that evade detection. The
term stealthy has come to encompass a variety of techniques
that attackers can employ to avoid detection. Here we show
how the states of the system (in particular, the reachable set
corresponding to the attack) can be manipulated under two
important types of stealthy attacks. We employ the chi-squared
fault detection method and demonstrate how this imposes
a constraint on the attack sequence either to generate no
alarms (zero-alarm attack) or to generate alarms at a rate
indistinguishable from normal operation (hidden attack).

I. INTRODUCTION

For many decades, Control Theory operated in a chal-
lenging but happy place in which problems pitted designers
against the world, a haphazard place of disturbances and
uncertainty. The past decade has seen the rise in concern
over attacks on control systems, which necessarily requires
us to shift our focus to a problem of designer against attacker,
a strategic and knowledgeable entity that seeks to exploit the
weaknesses of our systems and control frameworks.

Control systems have become an attractive target to at-
tackers due to accessibility, impact, and obfuscation. Large-
scale control systems such as process control plants are
increasingly moving toward Ethernet-like technology to com-
municate data throughout the system. This new architecture
provides new capabilities but also opens systems up to the
same types of cyber attacks that banking and database com-
panies endure. These systems also represent major industry
or municipal infrastructure, which means damaging them
makes large impact. Finally, these systems are large and
complex enough - and often not monitored well enough - for
attackers to manipulate the system without being detected.

The literature of attack detection has concerned itself with
designing methods to effectively monitor systems and detect
anomalies [1]-[6]. The origin of many of these methods
arise from fault detection, but have been retooled to consider
antagonistic and strategic “faults”. A key component of this
body of work is to understand the limits of these detectors,
and identifying attacks that are stealthy to these methods
is a critical way to benchmark detector performance. The
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term stealthy has taken on several meanings in the literature.
It has been used to address attacks that do not induce the
detectors to raise alarms; we rename these zero-alarm attacks
to be more precise [1], [7], [8]. It has also referred to an
attack that changes the alarm rate of the detector by only a
small amount; we call these perturbation attacks [9], [10].
We define a hidden attack which exactly mimics the alarm
rate of the detector. Stealthy is also used to describe attacks
that effect the uncontrollable and unobservable modes of the
system and, therefore, do not propagate to any measurement
or estimated state of the system [2]. Replay attacks also
fall into the category of stealthy attacks as they replay past
(recorded) data back to the monitoring equipment [11].

The attacks on unobservable/uncontrollable modes and
replay attacks completely circumvent the detectors, which
is interesting and relevant to the broader context of security,
but requires a countering strategy that goes beyond detectors.
The perturbation attack has a relatively small effect on the
system compared with zero-alarm and hidden attacks, thus
we also omit it from this study.

We use this manuscript to present a distribution-based
perspective on attack detection. As part of this we present
a equitable comparison between the impact of zero-alarm
and hidden attacks. We use the set of states reachable by
the system when driven by the attacker input as a metric for
this comparison. To achieve this, we present several novel
results to formulate and to find ellipsoidal outer bounds on
the reachable sets of the system corresponding to attacks.

II. BACKGROUND
In this work, we study stochastic discrete-time linear time-

invariant (LTI) systems{
xk+1 = Fxk +Guk + vk,

yk = Cxk + ηk,
(1)

in which the state xk ∈ Rn, k ∈ N, evolves due to the
state update provided by the state matrix F ∈ Rn×n, the
control input uk ∈ Rm filtered by the input matrix G ∈
Rn×m, and the i.i.d. zero-mean Gaussian system noise vk
with covariance matrix R1. The output yk ∈ Rp aggregates
a linear combination, given by the observation matrix C ∈
Rp×n, of the states and zero-mean Gaussian measurement
noise with covariance matrix R2. We assume that the pair
(F,C) is detectable and (F,G) is stabilizable.

We consider the scenario that the actual measurement yk
can be corrupted by an additive attack, δk ∈ Rp. At some
point in the process of measuring and transmitting the output
to the controller the attacked output becomes

ȳk = yk + δk = Cxk + ηk + δk. (2)
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If the attacker has access to the measurements, then it is
possible for the attack δk to cancel some or all of the original
measurement yk - so an additive attack can achieve arbitrary
control over the “effective” output of the system.

As our approach leverages a fault-detection approach, we
require an estimator to produce a prediction of the system
behavior. In this work we use the steady state Kalman filter

x̂k+1 = Fx̂k +Guk + L(ȳk − Cx̂k), (3)

where x̂k ∈ Rn is the estimated state. The observer gain L
is designed to minimize the steady state covariance matrix
P := limk→∞ Pk := E[eke

T
k ] in the absence of attacks,

where ek := xk− x̂k denotes the estimation error. Existence
of P is guaranteed since the pair (F,C) is assumed to be
detectable [12]. Next, we define the residual sequence rk

rk := ȳk − Cx̂k, (4)

the difference between what we actually receive (ȳk) and
expect to receive (Cx̂k), which evolves according to{

ek+1 =
(
F − LC

)
ek − Lηk + vk − Lδk,

rk = Cek + ηk + δk.
(5)

In the absence of attacks (i.e., δk = 0), it is straightforward
to show that the rk random variable falls according to a zero
mean Gaussian distribution with covariance [8]

Σ = E[rkr
T
k ] = CPCT +R2. (6)

In this work, we consider only one detector, the popular
chi-squared detector. Although other alternatives exist, the
chi-squared is easily the dominant choice for most research
and it also provides a transparent choice to highlight the
key messages we wish to communicate in this work. Similar
analysis can be done with these other detector choices using
attacks derived in our other work [7], [8], [13]. In the case
of the chi-squared detector, a quadratic distance measure zk
is created to be sensitive to changes in the variance of the
distribution as well as the expected value,

zk = rTk Σ−1rk. (7)

Since rk ∼ N (0,Σ), the zk random variable, as the sum of
the squares of normally distributed random variables, falls
according to the chi-square distribution. Since rk ∈ Rp,
this chi-squared distribution has p degrees of freedom. The
chi-squared detector is summarized as follows: for given a
threshold α ∈ R>0 and the distance measure zk = rTk Σ−1rk{

zk ≤ α −→ no alarm,
zk > α −→ alarm: k∗ = k,

(8)

alarm time(s) k∗ are produced. The Σ−1 factor in the defi-
nition of zk rescales the distribution (E[zk] = p, E[zkz

T
k ] =

2p) so that the threshold α can be designed independent of
the specific statistics of the noises vk and ηk; instead, it can
be selected simply based on the number of sensors, p.

It is important to note that because of the infinite support
of noises vk and ηk, the distance measure zk, distributed

according to a chi-squared distribution, also has infinite
support. Therefore, even in the absence of attacks, we expect
that the detector will generate alarms because some values
drawn from the distance measure distribution will exceed
the threshold α. Such alarms in the absence of an attack are
called false alarms. Because we can characterize the chi-
squared distribution analytically, we have an exact relation
between the choice of the threshold α and the expected rate
of false alarms A generated by the chi-squared detector.

Lemma 1: [8]. Assume that there are no attacks to the
system and consider chi-squared detector, with threshold α ∈
R>0, rk ∼ N(0,Σ). Let α = α∗ := 2P−1(1−A∗, p2 ), where
P−1(·, ·) denotes the inverse regularized lower incomplete
gamma function, then A = A∗.

A. Undetected Attacks

Some of the most insidious attacks on industrial control
systems feature attack strategies that manipulate the system
while all the time staying undetected. The effect of the attack
can aggregate during this “stealthy” execution of the attack
and the damage caused by the attack can spread. Past attacks
on industrial control systems seem to favor these undetected
attacks, such as the famous Stuxnet worm incident [14].

In many industrial settings fault detection is accomplished
simply by assigning a collection of static rules (e.g., if a
pressure in a vessel exceeds a given value). These offer little-
to-no protection against stealthy adversarial attacks as the
attack can deviate the actual system state while reporting a
“spoofed” state that is within normal operating conditions.
When detectors are implemented in control systems, these
detectors limit what the attacker is able to accomplish if
he/she seeks to remain undetected. We advance two notions
of undetected attacks (we phrase these with respect to the
chi-squared detector, however, the concept of these attack
classes generalize to other detectors). These attack models
require strong attacker knowledge and access, namely we
assume that the attacker has perfect knowledge of the system
dynamics, the Kalman filter, control inputs, measurements,
and chi-squared procedure. In addition, the attacker has read
and write access to all the sensors at each time step. The goal
of these stealthy attacks is to construct a worst case scenario
to bound the capabilities of attackers.

Zero-alarm attacks generate attack sequences that main-
tain the distance measure at or below the threshold, i.e.,
zk ≤ α. These attacks generate no alarms during the attack.
To satisfy this condition we define the attack as

δk = −Cek − ηk + Σ
1
2 δ̄k, (9)

where δ̄k ∈ Rp is any vector such that δ̄Tk δ̄k ≤ α and Σ
1
2 is

the symmetric square root of Σ. This attack sequence leads
the distance measure to become

zk = (Cek + ηk + δk)TΣ−1(Cek + ηk + δk) ≤ α. (10)

Since zk ≤ α, no alarms are raised. A schematic of a zero-
alarm attack is shown in Fig. 1. Although generating no
alarms seems like a successful strategy to avoid detection, it
is important to remember that in the attack-free case alarms
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Fig. 1. The original (attack-free) zk distribution (top) is chi-squared with
p degrees of freedom (this paper uses examples in which p = 2). The
threshold α is selected to satisfy a false alarm rate of A, implying that in
the attack-free distribution, the area under the distribution curve that falls
beyond α is A. In zero-alarm attacks (middle), δ̄k is selected such that zk
is no larger than α, implying that no alarms are raised under zero-alarm
attacks. In hidden attacks (bottom), δ̄k is designed so that the fraction of the
distribution that falls beyond α matches that of the attack-free distribution,
which means that the alarm rate under the hidden attack is equal to the
false alarm rate. The definition of the zero alarm and hidden attacks do not
stipulate the shape of the density functions above and below α, although
the allocation of mass in the density function greatly influences the effect
of the attack on the reachable states.

are raised due to the infinite support of the distance measure
distribution. Thus, before the attack, alarms are raised at a
rate A > 0 and after the attack the alarm rate becomes zero,
A = 0. While the detector does not monitor changes in the
false alarm rate, it is possible that an operator might notice
this discrepancy. This leads us to develop a second class of
undetectable attacks. We are also motivated to develop the
following attacks because they exploit the stochasticity to
inject larger, more potent attacks.

Hidden attacks generate attack sequences that raise alarms
at the same rate as the false alarm rate of the detector (i.e.,
alarms are raised at the same rate during the attack as are
false alarms in the attack-free case). In hidden attacks, the
attack sequence δ̄k in (9) is a random variable designed such
that

Pr(zk > α) = Pr(δ̄Tk δ̄k > α) = A. (11)

In other words, on average out of N time steps: (1−A)N
time steps δ̄Tk δ̄k ≤ α and the remaining AN time steps
δ̄Tk δ̄k > α. The chi-squared detector tuned to a false alarm
rate A effectively splits the zk distribution into a part zk ≤ α
and a part zk > α, where α is selected using Lemma 1.
Hidden attacks ensure that the proportion of zk values larger
than α observed by the detector during the attack match the
proportion expected in the attack-free case [15]. A schematic
of a hidden attack is shown in Fig. 1.

B. Feedback

In order for the attack to propagate from the estimation
error to the state, we need to incorporate a model of
feedback in the control system. In this paper we assume
static estimator feedback uk = Kx̂. With this feedback the

closed-loop system becomes{
xk+1 = (F +GK)xk +GKek + vk,

ek+1 = (F − LC)ek − Lδk − Lηk + vk.
(12)

The estimation error updates according to, without attacks,

ek+1 = (F − LC)ek − Lηk + vk, (13)

and with attacks of the form in (9),

ek+1 = Fek − LΣ
1
2 δ̄k + vk. (14)

Remark 1: Note that if the spectral radius ρ[F ] > 1,
then ‖E[ek]‖ (and also ‖E[xk]‖ due to the interconnection)
diverges to infinity as k grows for any non-stabilizing k.
That is, attacks of the form (9) may destabilize the system
if ρ[F ] > 1. If ρ[F ] ≤ 1, then ‖E[ek]‖ may or may not
diverge to infinity depending on algebraic and geometric
multiplicities of the eigenvalues on the unit circle. Thus we
consider open-loop stable system matrices, ρ[F ] < 1.

III. REACHABLE SET BOUNDS

In order to compare the effects of these different stealthy
attacks, we require a metric to quantify the impact of each
attack. A popular choice to quantify system impact due to a
disturbance is the set of states reachable by the action of the
disturbance. Here, we show two techniques to derive outer
ellipsoidal bounds on the reachable states. The first, based
on Linear Matrix Inequalities (LMIs), constructs a convex
optimization problem, the solution of which is the ellipsoid
that bounds the states driven by attacks. This approach
provides more conservative estimates of the reachable set, but
allows for the opportunity to simultaneously design system
components, such as estimator and controller gain matrices,
to reduce the size of the reachable set (see, e.g., [10], [15]).
The second approach provides tighter bounds through the
use of geometric ellipsoidal methods.

The different definitions of the zero alarm attack and the
hidden attack naturally give rise to different reachable sets.
The challenge of the hidden attack definition is that there are
no constraints on the location of the A mass that falls beyond
α. This means that A of the probability density function of
the distance function can be made arbitrarily large, which
in turn makes the reachable sets driven by hidden attacks
arbitrarily large. Therefore, it is not meaningful to define the
outer bound of the reachable set corresponding to hidden
attacks - it would simply be the entire state space. Instead,
we introduce the notion of a p̄-probable ellipsoid which
encompasses the reachable set when the zk distribution is
truncated at z̄, where Pr(zk ≤ z̄) = p̄. This ellipsoid can
be interpreted graphically as a level set of the distribution
function of the reachable states (see Fig. 2). It is worth noting
that the probability p̄ corresponds to the truncation of the zk
distribution and does not specify the probability that a point
in the true reachable state set is in the p̄-probable ellipsoid.
While the later probability is closer to what we want to
know, this would require knowing the complete distribution
of reachable states which is what we aim to find in the first
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Fig. 2. The p̄-probable ellipsoid captures a level set of the distribution of
reachable states corresponding to when the system is driven by a truncated
distance measure, such that zk ≤ z̄, where Pr(zk ≤ z̄) = p̄.

place. Notwithstanding, there is a one-to-one mapping from
p̄ to level sets of the reachable set distribution, so increasing
(resp., decreasing) p̄ necessarily expands (resp., shrinks) the
ellipsoid level set, so this is not much of a restriction.

While we consider more general choices of p̄ in other work
(see [15]), here we focus on the most immediate choice p̄ =
1−A and so z̄ = α. Recall that the hidden attack (see Fig.
1 and (11)) only requires the attacker to satisfy one statistic
of the attack δ̄k, namely Pr(zk = δ̄Tk δ̄k ≤ α) = 1−A. For a
general hidden attack, we have no further information about
the distribution of zk (recall the shape of the distribution,
beyond this one constraint, is completely free for the attacker
to choose, see Fig. 1). Thus the only choice of p̄ that can be
evaluated for a general hidden attack is p̄ = 1−A. This also
simplifies the comparison of hidden attacks with zero alarm
attacks. Selecting z̄ = α as the truncation point of the zk
distribution implies then that we truncate the attacks such that
zk = δ̄Tk δ̄k ≤ α. This truncation to quantify the p̄-probable
ellipsoidal bound for the reachable set due to hidden attacks
now imposes the same constraint that exists in the case of
zero alarm attacks, see (10).

When we look at the complete reachable state of the
system, we can decompose the contributions due to system
noise and due to attack separately. Using the superposition
principle of linear systems, the estimation error ek can be
written as ek = evk + eδk, where evk denotes the part of ek
driven by noise and eδk is the part driven by attacks. We can
now write the estimation error dynamics in (14) as follows,
where we assume the attack starts at k = k∗,

evk+1 = Fevk + vk, evk∗ = ek∗ (15)

eδk+1 = Feδk − LΣ
1
2 δ̄k, eδk∗ = 0. (16)

Similarly, the state of the system xk can be written as xk =
xvk + xδk, where xvk denotes the part of xk driven by noise
and xδk is the part driven by attacks. Using this new notation,
we can write the system dynamics in (12) as follows,

xvk+1 = (F +GK)xvk −GKevk + vk, xvk∗ = xk∗ (17)

xδk+1 = (F +GK)xδk −GKeδk, xδk∗ = 0. (18)

With these definitions, there are two reachable sets we
aim to identify: the reachable states due to noise and due to
attack. Because the state equation depends on the estimation
error, in general, we must first identify the reachable estima-
tion error due to noise and due to attack. Interestingly, the
noise equations (15) and (17) have a special symmetry due
to the zero initial conditions, i.e., xv1 = ev1 = 0. By writing

out evk and xvk for each k = 1, 2, . . . , it quickly becomes
clear that xvk = evk for all k ∈ N. Thus, for the contribution
driven by noise, we need only to solve the evk equation. The
reachable set of the estimation error driven by noise equals
the reachable set of the states driven by noise.

Notice that the noise, a multivariate Gaussian distribution,
also has unbounded support, thus it also has an infinite
reachable set. We use the notion of a p̄-probable reachable set
to define a finite reachable set; for an equitable contribution
by noise and attack, we again select p̄ = 1−A and truncate
the distribution with v̄ such that

Pr(vTk R
−1
1 vk ≤ v̄) = p̄ = 1−A, (19)

where R1 is the covariance matrix of the system noise vk.
Since vTk R

−1
1 vk is a chi-squared random variable with n

degrees of freedom, the value of v̄ can be determined by
Lemma 1. Thus for noises, k ∈ N,

Rvx = Rve =
{
evk ∈ Rn

∣∣ (15), vTk R
−1
1 vk ≤ v̄

}
. (20)

For attacks, ∀ k ≥ k∗,

Rδe =
{
eδk ∈ Rn

∣∣ (16), δ̄Tk δ̄k ≤ α
}
, (21)

Rδx =
{
xδk ∈ Rn

∣∣ (18), eδk ∈ Rδe
}
. (22)

A. LMI Approach

In general, it is analytically intractable to compute a reach-
able set R exactly. Instead, using Linear Matrix Inequalities
(LMIs), for some positive definite matrix P , we derive outer
ellipsoidal bounds of the form E = {ξk | ξTk Pξk ≤ 1} con-
taining R. Our LMI results leverage the following lemma;
this approach parallels work in [10], [15] however, the attack
definitions are different, so they should be reformulated here.

Lemma 2: [16]. Let Vk be a positive definite function,
V1 = 0, and ζTk ζk ≤ κ ∈ R>0. If there exists a constant
a ∈ (0, 1) such that the condition below holds, then Vk ≤ 1:

Vk+1 − aVk −
1− a
κ

ζTk ζk ≤ 0. (23)

We present a generic solution to identify the outer bound-
ing ellipsoids we need. We consider a linear system driven by
an input that is elliptically bounded, which, as we will show,
represent the dynamics in (15)-(18) and the corresponding
constraints in (20)-(22).

Proposition 1: Given a LTI system ξk+1 = Aξk + Bµk,
A ∈ Rn×n and B ∈ Rn×p, with the constraint µTkRµk ≤
1, R > 0, for all k ∈ N, if there exists a ∈ (0, 1) and
positive definite matrix P ∈ Rn×n that solves the convex
optimization,

min
P
− log detP,

s.t. P > 0, and[
aP −ATPA −ATPB
−BTPA (1− a)R−BTPB

]
≥ 0,

(24)

then the reachable states R ⊆ E = {ξk ∈ Rn | ξTk Pξk ≤ 1}
and the ellipsoid E has minimum volume.

Proof: Let Vk = ξTk Pξk and ζk = R
1
2µk in (23) in

Lemma 2, where R
1
2 is the symmetric square root of the
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positive definite matrix R. It is easy to confirm that ζTk ζk =
(R

1
2µ)T (R

1
2µ) = µTkRµk ≤ 1 with κ = 1. Substituting

the dynamic equation for ξk+1 in Vk+1 yields an expression
that when factored into quadratic form νTk Qνk ≥ 0, with
νk = [ξTk , µ

T
k ]T , the matrix Q is the LMI in the optimization

problem above. Thus the bounding ellipsoid is given by E =
{ξk | Vk = ξTk Pξk ≤ 1}.

To ensure that the ellipsoid bound is as tight as possible,
we minimize (detP)−

1
2 since this quantity is proportional

to the volume of E . We instead minimize log detP−1 as
it shares the same minimizer and because for P > 0 this
objective is convex [17].

We now use this generic result to outer bound the four
reachable sets we need (In is the n× n identity matrix).

Theorem 1: The reachable sets

Rve = Rvx, Rδe, and Rδx,

are contained in the minimum volume ellipsoids

Eve = Evx , Eδe , and Eδx,

respectively, characterized by the positive definite matrices

Pve = Pvx , Pδe , and Pδx,

respectively, which are the solutions to the convex optimiza-
tion in Proposition 1 with to the following choices of A, B,
and R, respectively:

• Pve = Pvx : A = F , B = In, R = 1
v̄R
−1
1 ,

• Pδe : A = F , B = −LΣ
1
2 , R = 1

αIp,

• Pδx: A = F +GK, B = −GK, R = Pδe .

Proof: The proofs of each case are quite similar. We
prove the case for Pδx and the rest follow a same pattern. In
(22), we identified that eδk ∈ Rδe. Instead we impose eδk ∈ Eδe .
These sets are not equal, but since the ellipsoid contains the
reachable set, this still satisfies the requirement of (22) - it
does so with extra conservatism by also including estimation
errors eδk ∈ Eδe \ Rδe.

Setting A = F + GK is straightforward comparing (18)
to Proposition 1. Define the input vector µk = eδk such that

µTkRµk = µTkPδeµk ≤ 1, (25)

since (eδk)TPδe eδk ≤ 1 by the definition of the ellipsoid Eδe .
With this definition of µk, the corresponding input matrix
that satisfies (18) is B = −GK.

Having derived the set of reachable states due to noise
and due to attack, both bounded by ellipsoids, we now
compose these together to yield the total reachable set of
states. The superposition of two ellipsoidal sets has been
studied extensively and labeled the geometric (Minkowski)
sum such that E1 ⊕ E2 = {x + y | x ∈ E1, y ∈ E2}.
The complete reachable set is then Ex = Evx ⊕ Eδx. It is
possible to compose another convex optimization and LMI
to combine the ellipsoids [15], the geometric sum provides a
tighter resulting ellipsoid. When these techniques are used to

design controller and estimator gains, optimization methods
are preferred, but in this work we do not follow this line of
inquiry.

B. Geometric Approach

A geometric approach to finding the ellipsoidal bounds for
the reachable set of states comes from the observation that
the equations in (15)-(18) contain inputs that are ellipsoidally
bounded, i.e., 1

v̄v
T
k R
−1
1 vk ≤ 1 and 1

α δ̄
T
k δ̄k ≤ 1 (in fact these

are spherically bounded). The geometric sum introduced
above provides an operation that simultaneously computes
all possible combinations between two geometric sets. For
example, the dynamics for k ∈ N,

ξk+1 = Aξk +Bµk, ξ1 = 0, with µTkRµk ≤ 1, (26)

can be interpreted as an ellipsoidal update. For k = 1,

ξ2 = Aξ1 +Bµ1. (27)

The µT1 Rµ1 ≤ 1 bound identifies that any possible value
of µ1 belongs to an ellipse µ1 ∈ {µ | µTRµ ≤ 1}.
Many ellipsoid calculations are more concise when the
ellipsoid is characterized by its shape matrix, Q, E(Q) =
{µ | µTQ−1µ ≤ 1}. With this definition it is easy to express
the linear transformation of an ellipse: if ξ = Mµ and
µ ∈ E(Q), then ξ ∈ E(MQMT ) [18]. Thus in this example
µ1 ∈ E(R−1) and ξ2 ∈ E(BR−1BT ). Continuing,

ξ3 = Aξ2 +Bµ2, (28)

where ξ2 ∈ E(BR−1BT ) and µT2 Rµ2 ≤ 1. In this case
ξ3 ∈ E(ABR−1BTAT )⊕E(BR−1BT ), where ⊕ represents
the geometric sum. Although the geometric sum of two ellip-
soids is not necessarily an ellipsoid, there are straightforward
techniques to tightly fit an ellipsoid around the resulting
shape (see [18]) so we will consider for the rest of this paper
that the geometric sum of two ellipsoids is an ellipsoid.

We see now that all possible values that ξk can take
on will belong to an ellipsoid, and one that is iteratively
updated along the lines of the discussion above. Now we
will specialize these observations to the context here to find
Ex. We take the same approach as in the LMI method by
splitting the dynamics into a contribution driven by noise
and a contribution driven by the attack, Ex = Evx ⊕ Eδx.

Theorem 2: Given the estimation and state equations (15)
and (17) for the system driven by noise, the ellipse Evx
contains all possible values of xvk, i.e., Rvx ⊆ Evx , with

Evx =

∞⊕
k=0

E
(
v̄F kR1(F k)T

)
. (29)

Proof: Recall for the contribution driven by noise we
need only to solve the evk equation (15). Expanding the
recursive definition we can express evN (xvN ) in terms of all
the past terms,

xvN = evN =

N−1∑
k=1

FN−1−kvk. (30)
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Note that vi and vj are independent and equivalently
bounded. Therefore, the terms of (30) have identical ellip-
soids, E(v̄R1) transformed by different powers of F ,

EvxN
=

N−1⊕
k=1

E
(
FN−1−k(v̄R1)(FN−1−k)T

)
,

=

N−2⊕
k=0

E
(
v̄F kR1(F k)T

)
. (31)

The ellipsoid that bounds all possible trajectories is the
limiting ellipsoid as N goes to infinity.

Remark 2: We assume the matrix F is stable, otherwise
the attacker can easily achieve arbitrarily large reachable
sets simply by decoupling the controller from the open-
loop system. Because of this, the volume of the ellipsoids
(proportional to the determinant of their shape matrix) with
higher powers of F become vanishingly small,

det
(
v̄F kR1(F k)T

)
= v̄ det(R1)(detF )2k. (32)

Since ρ[F ] < 1, detF < 1 and the volume goes to zero
as k becomes large, so one can simply take N terms of
the limiting geometric sum in (29) to achieve an accurate
approximation of the bounding ellipsoid. The convergence
of this sum (and hence the number of terms that should be
chosen) depends on the spectrum of F .

Theorem 3: Given the estimation and state equations (16)
and (18) for the system driven by attack, the ellipse Eδx
contains all possible values of xδk, where,

Eδx =

∞⊕
k=1

E
(
αHLΣLTHT

)
, (33)

where H = (F +GK)k − F k. In other words Rδx ⊆ Eδx.

Proof: Expanding the recursive definitions in (18) and
substituting in (16), we find

xδN =

N−2∑
k=1

(
(F +GK)N−1−k − FN−1−k)LΣ

1
2 δk. (34)

The rest of the proof follows the same line as the proof of
Theorem 2 and so we omit the details.

Remark 3: Similarly, ρ[F + GK] < 1 because the con-
troller matrix is selected to make the closed-loop system
stable. Thus Theorem 3 benefits from the same practical
advantage of constructing a good approximation of the
ellipsoid Eδx with finitely many terms.

IV. EMPIRICAL REACHABLE SETS

We now demonstrate these tools and provide a compar-
ison between zero-alarm and hidden attacks. Although we
generate a common bounding ellipsoid for both attacks, we
also run extensive Monte-Carlo simulations to derive an
approximation of the empirical reachable set the ellipsoids
are meant to bound. We consider an LTI system (with
matrices given underneath Table I) for this study with the

Fig. 3. The volume (blue is larger volume) of the reachable sets for different
zero alarm zk distributions of the form shown in Table I.

TABLE I
PARAMETERS FOR ZERO ALARM (ZA) AND HIDDEN (H) ATTACKS.

ZA.A ZA.B ZA.C H.A H.B H.C H.D
c1 α/8 α/2 α α α α α
w1 α/10 α 0 0 0 0 0
c2 - - - 1.5α 2α 10α 100α
w2 - - - α 0 0 0

F =

[
0.84 0.23
−0.47 0.12

]
, G =

[
0.07 −0.32
0.23 0.58

]
, C =

[
1 0
2 1

]
,

R1 =

[
0.045 −0.011
−0.011 0.02

]
, K =

[
1.404 −1.042
1.842 1.008

]
,

L =

[
0.0276 0.0448
−0.01998 −0.0290

]
, R2 =

[
2 0
0 2

]
, Σ =

[
2.086 0.134
0.134 2.230

]
.

chi-squared detector tuned to a false alarm rate A = 0.05
(5%).

Fig. 1 clearly shows the ambiguity in designing zero
alarm attacks and hidden attacks. In a zero alarm attack,
the density function can be arbitrarily shaped on zk ≤ α.
For simplicity, consider that we use a uniform distribution
of width w1 and centered at zk = c1, such that the support
of the distribution is over [c1− w1

2 , c1 + w1

2 ]. In other work,
we have shown that in terms of steady-state deviation of
the state, there exists a magnitude and “direction” of δ̄k that
yields the strongest attack [13]. It is intuitive that maximizing
the norm of the attack δ̄Tk δ̄k = α leads to stronger attacks
than δ̄Tk δ̄k < α. While we show an analytic result for the
steady state deviation of the state [13], showing the same
for the reachable sets is more nuanced. To demonstrate that
this intuition holds empirically, we calculate the volume of
the empirical reachable set attained through simulation. We
approximate the volume by fitting an ellipsoid to the point
cloud, where the lengths of the principle axes are given in
terms of the eigenvalues of the data, as 1/

√
λ1 and 1/

√
λ2.

The volumes are plotted in Fig. 3 for different choices of
w1 and c1 and clearly shows the largest volume ellipsoids
are generated by attacks for which c1 = α and w1 ≈ 0. We
select three sets of values for the pair (w1, c1) labeled ZA.A,
ZA.B, and ZA.C for our comparison (see Table I).

For hidden attacks, there are two regions to define (below
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Fig. 4. The empirical reachable state sets in black with ellipsoidal bounds
derived by the LMI approach (blue) and geometric approach (red) for zero
alarm attacks (a) ZA.A, (b) ZA.B, and (c) ZA.C, as well as hidden attacks
(d) H.A, (e) H.B, (f) H.C, and (g) H.D.

and beyond zk = α). Based on our prior observations (and
intuition), we set the 1 − A portion of the distribution that
falls at or below α as a point mass at α. From Fig. 3,
an attacker who wishes to maximize their influence on the
reachable set would naturally make this choice. As discussed
before, the second mass lies beyond α and could theoretically
cause arbitrarily large reachable sets. Here we select the
A mass in four different configurations (parameterized by
a second uniform distribution section centered at c2 and
with width w2, see Table I): spread uniformly from (α, 2α]
(labeled H.A), a point mass at 2α (H.B), a point mass at 10α
(H.C), and a point mass at 100α (H.D).

In Fig. 4, we display the empirical reachable sets for all
seven of these attacks as well as the LMI (blue) and geomet-
ric (red) outer ellipsoidal bounds derived with our methods.
We first observe that both techniques are able to rather tightly
bound the reachable set of states due to zero alarm attacks,
although the geometric approach provides slightly tighter
ellipsoid bounds. For hidden attacks, while it takes high
magnitude attacked zk values (e.g., c2 = 10α, 100α) to
see a distinct growth in the volume of the reachable set, it
is possible to grow the reachable set arbitrarily large.

The more substantial takeaway from this empirical study is
that when we use conventional detectors that use a single cut
in the distribution to determine if the current zk is more likely
to come from the original attack-free distribution or some
other (attacked) distribution, we lack the ability to constrain
the attacker due to the A fraction of the distribution that
falls beyond the detector threshold α. We require either a
combination of detectors or modified definitions of current
detectors to synthesize the information necessary to limit at-
tackers further. When attackers hide in the infinite support of
the noise, as in a hidden attack, we require some mechanism
to effectively truncate or bound the impact of an attacker.
Some obvious solutions are available, such as enforcing
finite support of all noises, however, these approaches have
not been integrated into conventional detector methods. In
addition saying a disturbance as finite support is different
from practically using this assumption; this gap must be
addressed before this type of approach could be used.

V. CONCLUSION
We have presented a thorough exposition of the current

ideology on using fault detection type detectors for identifi-
cation of (sensor) attacks on control systems. In particular,
we compared two attacks in which the opponent aims to
remain stealthy - one in which the attack sequence is
generated so as to not raise any alarms and one in which
the attack sequence raises alarms at the same rate they occur
in the absence of attacks. We developed two approaches
to determine ellipsoidal and p̄-probable ellipsoidal bounds
(when the reachable set is infinite) on the reachable states
of the system in response to the attack and to the inherent
system noise. We demonstrated these concepts and methods
with a numerical example that emphasizes the need for work
that goes beyond traditional detectors.
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