
Lab 3: Centrality Measures (Newman, 7.1-7.7)

I have provided some stub code in lab3_stub.py located online. At the top of the file add a commented out section (using #) and place
your names and netIDs there. Please make sure you label your print statements, so we know what you are printing.

In this lab you will use a co-appearance network of characters from The Lord of the Rings. Although it was made into a series of movies,
the story was first a book by J. R. R. Tolkien. The nodes of the network are the characters in the book and and edges between nodes carry
the weight equivalent to the number of chapters in which both characters appear together.

Initially, the network is loaded in the stub code as an unweighted network, but your analysis should be done to be compatible with the
weighted version which we will read in next:

G = zen.io.edgelist.read('LotR_characters.edgelist',weighted=False)

The Stub Code
Throughout this lab you will have a vector (in Python it is a NumPy array, let's call it v) that represents the centrality of all the nodes, so it
will be of length n, where n is the number of nodes in the network. I've prewritten some code that will help to easily print out the top 5
characters in terms of the centrality vector v. You'll see this already at the top of the stub code:

def print_top(G,v,num=5):
 idx_list = [(i,v[i]) for i in range(len(v))]
 idx_list = sorted(idx_list, key = lambda x: x[1], reverse=True)
 for i in range(min(num,len(idx_list))):
 nidx, score = idx_list[i]
 print ' %i. %s (%1.4f)' % (i+1,G.node_object(nidx),score)

This defines a function called print_top(...) which takes in the zen Graph object G and the centrality vector. It creates a new list of
tuples, with each tuple having the index of the node and the centrality value of the node. It then sorts this based on the centrality score.
Then it prints the top num (default of 5) node names according to their centralities.

The next helper function returns the index of the maximum value in a list/array. Technically it returns the first index that has this value (this
will only occur if the maximum value is repeated).

def index_of_max(v):
 return numpy.where(v == max(v))[0]

The where function (see numpy.where) returns an array where the inner condition is true, so the [0] at the end extracts the first element
of the array. It is possible that two (or more) nodes have exactly the same centrality, so the where function might return a vector with two
(or more) entries. However, if two nodes have the same centrality, then we don't care which one is returned, so taking the first is still a fine
solution.

Section 7.1: Degree Centrality
Compute the degree centrality of the nodes in The Lord of the Rings network. Although the network is currently unweighted, do this assuming
that the network is weighted, so degree centrality doesn’t just count the number of neighbors, but returns the sum of the weights of the
edges to all the neighbors. You could do this by looping through the network itself, or by looping over the adjacency matrix. Use the function
we defined above to print out the top 5 characters with highest centrality in terms of degree. These characters are simply the characters
with the most (and strongest) connections to other characters.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html

Section 7.2: Eigenvector Centrality

Calculate the eigenvector centrality of the nodes in The Lord of the Rings network. Do this using the built-in
zen.algorithms.centrality.eigenvector_centrality_(G,weighted=True) function as well as computing it directly from the
adjacency matrix (using linear algebra). Print the top characters using the print_top function, labeling the output of both methods.

You will find the numpy.linalg.eig function useful, which calculates both the eigenvalues and eigenvectors of a matrix (in our import
statement we have renamed numpy.linalg as la, so calling this would just be written as la.eig(...)). Note that these values will come
back as complex numbers, since eigenvalues and eigenvectors are in general complex. However, recall, that for an undirected network, we
have a symmetric adjacency matrix, which has real eigenvalues and eigenvectors (recall your linear algebra!). Even though the imaginary
part is zero, the function still returns a complex value, e.g., 4.52 + 0.j. So before you use them, take their absolute value: numpy.abs(x),
to get only the real part. I’ve gotten you started by calling la.eig and identifying the index of the largest eigenvalue.

Although eigenvector centrality (and some of the other centrality measures) uses eigenvalues and eigenvectors, typically for large networks
-- large matrices -- it is not computationally efficient to calculate and then use the eigenvalues and eigenvectors. Instead, most centrality
methods, like the one in zen, will use an iterative scheme to calculate an approximation of the eigenvalues and eigenvectors. The same is
true for the matrix inversions we will see in the next section and the book discusses the iterative scheme a bit more in depth. If you have
extra time, you can try to implement this iterative scheme for any of these methods!

Let’s spend some time to build our intuition about eigenvector centrality. Here, we are going to confirm that the values of eigenvector
centralities are selected so that the process of passing centralities around the graph is in “steady-state”. If it was a perfect steady-state,
then the centralities of a node’s neighbors would add up to the centrality of that node. We observed in class that we instead get that the a
node’s centrality is equal to the sum of its neighbors’ centralities, normalized by the largest eigenvalue. Confirm that this is the case for
node “arwen” (node 60) by printing these two quantities: the centrality of Arwen and the sum of the centralities of Arwen’s neighbors
(normalized by the largest eigenvalue).

Next we will observe the convergence of the terms of eigenvector centrality using the iterative scheme. We will see that 10 steps is enough
to observe this behavior for this network. The code is fully functional and does not require you to modify anything to work (provided you
haven’t changed the names of k, v, and k1_idx). Notice I am taking num_steps steps starting from an initial guess of centrality that is
rather arbitrary (x is all zeros except I make one entry nonzero). At each step i, I am normalizing the centrality vector x, then determining
the coefficients of the expansion: x=c1*v1+c2*v2+...+cn*vn (which I call cs in the code), then propagating forward along the edges by one
step. Then I’m plotting each of the ci over the steps of this iteration. What I want you to notice is that x is converging towards the direction
of v1, the eigenvector corresponding to the largest eigenvalue. Turn in this plot.

Section 7.3: Katz Centrality
We discussed several issues with eigenvector centrality, especially in directed networks (namely that nodes without any incoming edges
are worth nothing). Although this may be acceptable in some cases, we now look at a model that gives every node a base level of centrality
(given by β). Calculate Katz centrality for the nodes in The Lord of the Rings network using linear algebra, or if you are curious, you can use
the same type of iterative scheme used for eigenvector centrality. Try a few values for α and print out the top 5 central characters in each
case.

Along the way, you'll need to do a few matrix manipulations. These NumPy functions may be useful: numpy.ones((n,1)) (creates an n-
dimensional vector of all ones), numpy.eye(n) (creates an nxn identity matrix), la.inv(A) (calculates the inverse of a matrix),
numpy.dot(A,B) (use this to do matrix multiplication -- the * notation does not do matrix multiplication).

Section 7.4: PageRank Centrality
PageRank introduces another perspective on centrality in which the centrality of a node is not simply passed on to all its neighbors. Instead
its centrality is divided by its degree before it is passed on. Calculate PageRank centrality (by linear algebra) for The Lord of the Rings
network and print the top 5 characters with highest centrality.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html

In class we defined PageRank centrality as x=(I- αAD-1)-1.1 and indicated that 0≤α<1. For a connected undirected graph, show that the
vector v1=(k1,k2,...,kn), where ki is the degree of node i, is an eigenvector of AD-1 and using this show why α is upper bounded by 1.

Section 7.5: Hubs & Authorities
Since hubs and authorities only occur for directed networks, we will not calculate them for The Lord of the Rings network. In our class
discussion we identified that the ranking of authorities of a directed graph G coincided with eigenvector centrality of the cocitation network
of G and that the ranking of hubs coincided with eigenvector centrality of the bibliographic coupling network of G. In doing this we observed
that they shared an eigenvalue of (αβ)-1. Now derive the relationship between the corresponding eigenvectors for hubs and authorities –
i.e., express the hub eigenvector in terms of the authorities eigenvector.

Section 7.6: Closeness Centrality
Closeness centrality is yet another centrality measure for networks, but we will skip this in our analysis of The Lord of the Rings network.

Section 7.7: Betweenness Centrality

Betweenness is our final centrality measure, however, there are many, many other measures that exist and are used in the field of network
science. In the original definition, betweenness centrality reports how many of the shortest paths between any two nodes in the network go
through a particular node. In the context of The Lord of the Rings network, high betweenness of a particular person indicates that the
shortest way to connect from most characters to most other characters includes this person. Betweenness is an existing algorithm in zen:
zen.algorithms.centrality.betweenness_centrality_(...). Using this function print the top 5 characters with highest
betweenness centrality.

Weighted Analysis

The original Lord of the Rings network is actually a weighted network. Now load the network as a weighted network by changing the
weighted=False to weighted=True.

Changing G at the top of your file is (almost) all you need to do – although do think through and make sure you have implemented all your
centrality calculations compatible with weighted edges. In particular, chances are that your computation of eigenvector centrality being a
steady-state no longer works – how should you update this calculate to incorporate weights? Make this change and notice that it is
backwards compatible (works still for the unweighted version). Re-run your program and comment on the changes that you see due to
including the weights in the analysis. In particular, offer explanations for why some of the rankings change and some do not (recall, we're
most interested in the order of the characters, not about the particular numerical values).

A Sequel
Actually, it is a prequel. Tolkien also wrote The Hobbit, which takes place before the events in The Lord of the Rings. There are a number of
characters in common between the books, so it is interesting to see what happens to our centrality measures when we include The Hobbit
information into the network. In this case, I have done the exact same process as before to create the network, however, now with both The
Hobbit and The Lord of the Rings books included. You can do this analysis for just the weighted version of this network. Observe again the
changes from including the new characters. Do some of the changes make sense based on what you know about The Hobbit (the movie
will give you a good enough guess for this). The line to import this network is already in your stub code, just commented out at the top.

Submission

In this lab you will run the same code several different ways, so in this case, please submit a PDF of the printout of your code for all these
runs (unweighted, weighted, both networks combined). When you turn in your .py file, please leave it in the right form to run this last
analysis (the sequel with Hobbit and Lord of the Rings).

