
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 8, AUGUST 2013 1919

Control and Synchronization of Neuron Ensembles
Jr-Shin Li, Member, IEEE, Isuru Dasanayake, Student Member, IEEE, and Justin Ruths

Abstract—Synchronization of oscillations is a phenomenon
prevalent in natural, social, and engineering systems. Controlling
synchronization of oscillating systems is motivated by a wide range
of applications from surgical treatment of neurological diseases
to the design of neurocomputers. In this paper, we study the
control of an ensemble of uncoupled neuron oscillators described
by phase models. We examine controllability of such a neuron
ensemble for various phase models and, furthermore, study the
related optimal control problems. In particular, by employing
Pontryagin’s maximum principle, we analytically derive optimal
controls for spiking single- and two-neuron systems, and analyze
the applicability of the latter to an ensemble system. Finally, we
present a robust computational method for optimal control of
spiking neurons based on pseudospectral approximations. The
methodology developed here is universal to the control of general
nonlinear phase oscillators.

Index Terms—Controllability, Lie algebra, optimal control,
pseudospectral methods, spiking neurons.

I. INTRODUCTION

N ATURAL and engineered systems that consist of en-
sembles of isolated or interacting nonlinear dynamical

components have reached levels of complexity that are beyond
human comprehension. These complex systems often require
an optimal hierarchical organization and dynamical structure,
such as synchrony, for normal operation. The synchronization
of oscillating systems is an important and extensively studied
phenomenon in science and engineering [1]. Examples include
neural circuitry in the brain [2], sleep cycles and metabolic
chemical reaction systems in biology [3]–[5], semiconductor
lasers in physics [6], and vibrating systems in mechanical en-
gineering [7]. Such systems, moreover, are often tremendously
large in scale, which poses serious theoretical and computa-
tional challenges to model, guide, control, or optimize them.
Developing optimal external waveforms or forcing signals that
steer complex systems to desired dynamical conditions is of
fundamental and practical importance [8], [9]. For example, in
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neuroscience devising minimum-power external stimuli that
synchronize a population of coupled or uncoupled neurons,
or desynchronize a network of pathologically synchronized
neurons, is imperative for wide-ranging applications from the
design of neurocomputers [10], [11] to neurological treatment
of Parkinson’s disease and epilepsy [12]–[14]; in biology and
chemistry, application of optimal waveforms for the entrain-
ment of weakly forced oscillators that maximize the locking
range or alternatively minimize power for a given frequency
entrainment range [8], [15] is paramount to the time-scale
adjustment of the circadian system to light [16] and of the
cardiac system to a pacemaker [17].
Mathematical tools are required for describing the com-

plex dynamics of oscillating systems in a manner that is
both tractable and flexible in design. A promising approach
to constructing simplified yet accurate models that capture
essential overall system properties is through the use of phase
model reduction, in which an oscillating system with a stable
periodic orbit is modeled by an equation in a single variable
that represents the phase of oscillation [18], [19]. Phase models
have been very effectively used in theoretical, numerical, and
more recently experimental studies to analyze the collective
behavior of networks of oscillators [20]–[23]. Various phase
model-based control theoretic techniques have been proposed
to design external inputs that drive oscillators to behave in a
desired way or to form certain synchronization patterns. These
include multilinear feedback control methods for controlling
individual phase relations between coupled oscillators [24] and
phase model-based feedback approaches for efficient control
of synchronization patterns in oscillator assemblies [9], [25].
These synchronization engineering methods, though effective,
do not explicitly address optimality in the control design
process. More recently, minimum-power periodic controls
that entrain an oscillator with an arbitrary phase response
curve (PRC) to a desired forcing frequency have been derived
using techniques from calculus of variations [15], [26]. In this
work, furthermore, an efficient computational procedure was
developed for optimal control synthesis employing Fourier
series and Chebyshev polynomials. Minimum-power stimuli
with limited amplitude that elicit spikes of a single neuron
oscillator at specified times have also been analytically calcu-
lated using Pontryagin’s maximum principle, where possible
neuron spiking range with respect to the bound of the control
amplitude has been completely characterized [27], [28]. In
addition, charge-balanced minimum-power controls for spiking
a single neuron has been thoroughly studied [29], [30].
The objective of this paper is to study the fundamental

limit of how the neuron dynamics, described by phase models,
can be perturbed by the use of an external stimulus that is
sufficiently weak. We, in particular, investigate controllability
and develop optimal controls for spiking an ensemble of
neurons. In Section II, we briefly introduce the phase model
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for oscillating systems and examine controllability of an en-
semble of uncoupled neurons for various commonly used phase
models characterized by different baseline dynamics and phase
response functions. Then, in Section III, we formulate the
optimal control of spiking neurons as steering problems and de-
rive minimum-power and time-optimal controls for single- and
two-neuron systems. Finally, we implement a multidimensional
pseudospectral method to solve optimal ensemble control prob-
lems for spiking an ensemble of neurons, as is proven possible
in Section II. This computational method permits us to further
explore various objective functions with tunable parameters,
which exchange, for example, performance and energy. The
methodology developed in this article is universal to the control
of general nonlinear phase oscillators.

II. CONTROL OF NEURON OSCILLATORS

A. Phase Models

The dynamics of an oscillator are often described by a set of
ordinary differential equations that has a stable periodic orbit.
Consider a time-invariant system with ,
where is the state and is the control, and
assume that it has an unforced stable attractive periodic orbit

homeomorphic to a circle, satisfying
, on the periodic orbit for

. This system of equations can be reduced to
a single first-order differential equation, which remains valid
while the state of the full system stays in a neighborhood of its
unforced periodic orbit [19]. This reduction allows us to repre-
sent the dynamics of a weakly forced oscillator by a single phase
variable that defines the evolution of the oscillation

(1)

where is the phase variable, and are real-valued functions,
and is the external stimulus (control) [19], [31]. The
function represents the system’s baseline dynamics and is
known as the PRC, which describes the infinitesimal sensitivity
of the phase to an external control input. One complete oscil-
lation of the system corresponds to . In the case of
neural oscillators, represents an external current stimulus and
is referred to as the instantaneous oscillation frequency in the

absence of any external input, i.e., . As a convention, a
neuron is said to spike or fire at time following a spike at
time 0 if evolves from to , i.e., spikes
occur at , where . In the absence of
any input the neuron spikes periodically at its natural fre-
quency, while by an appropriate choice of the spiking time
can be advanced or delayed in a desired manner.
In this paper, we study various phase models characterized by

different and functions in (1). In particular, we investigate
the neural inputs that elicit desired spikes for an ensemble of
isolated neurons with different natural dynamics, e.g., different
oscillation frequencies. Fundamental questions on the control-
lability of these neuron systems and the design of optimal inputs
that cause them to spike arise naturally and will be discussed.
These are related to the control of a collection of structurally

Fig. 1. Free evolution of a Theta neuron. The baseline current ,
and hence it spikes periodically with angular frequency and period

.

similar nonlinear systems. Similar control problems of control-
ling a family of structurally similar bilinear systems have been
extensively studied in quantum control [32]–[35].

B. Controllability of Neuron Ensembles

In this section, we analyze controllability properties of
finite collections of neuron oscillators. We first consider the
Theta neuron model (Type I neurons) which describes both
superthreshold and subthreshold dynamics near a SNIPER
(saddle-node bifurcation of a fixed point on a periodic orbit)
bifurcation [36], [37].
1) Theta Neuron Model: The Theta neuron model is charac-

terized by the neuron baseline dynamics,
, and the PRC, , namely,

(2)

where is the neuron baseline current. If , then
for all . Therefore, in the absence of the input the neuron
fires periodically since the free evolution of this neuron system,
i.e., , has a periodic orbit

for (3)

with the period and hence the frequency ,
where is a constant depending on the initial condition. For
example, if , then . Fig. 1 shows the free evolution
of a Theta neuron with . This neuron spikes periodically
at with angular frequency . When

, then the model is excitable, namely, spikes can occur
with an appropriate input . However, no spikes occur in the
absence of an input as

for

and there are two fixed points (one of which is stable) for
.

Now we consider spiking a finite collection of neurons with
distinct natural oscillation frequencies and with positive base-
line currents. This gives rise to a steering problem of the fi-
nite-dimensional single-input nonlinear control system,
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, where , ,
and . In the vector form, this system appears as

...
...

...
(4)

in which , , and
for all . Note that

for all . The ultimate proof of our understanding of neural
systems is reflected in our ability to control them; hence, a com-
plete investigation of the controllability of oscillator popula-
tions is of fundamental importance. We now analyze controlla-
bility for the system as in (4), which determines whether spiking
or synchronization of an oscillator ensemble by the use of an ex-
ternal stimulus is possible.
Because the free evolution of each neuron system , ,

in (4) is periodic as shown in (3), the drift term causes no
difficulty in analyzing controllability. The following theorem
provides essential machinery for controllability analysis.
Theorem 1: Consider the nonlinear control system

(5)

Suppose that and are vector fields on a manifold . Sup-
pose that meet either of the conditions of Chow’s theorem
(described in Appendix A), and suppose that for each initial con-
dition the solution of

is periodic with a least period . Then the
reachable set from for (5) is , where

denotes the Lie algebra generated by the vector fields
and , and is the smallest subgroup of the

diffeomorphism group, , which contains for all
[38].

Proof. (Sketch): The underlying idea of this theorem for
dealing with the drift is the utilization of periodic motions along
the drift vector field, , to produce negative drift by for-
ward evolutions for long enough time. That is to say, if we are
at and we want to pass backwards along the vector field

, we simply let be zero and allow the free periodic mo-
tion to bring nearly back to along the integral curve of

. If the least period of the periodic solution through
is , then, by following for units of time,

we have the same effect as following for units of
time. Thus we can, given enough time, reach any point in the
set from . More details of the proof can
be found in [38] and the reference therein.
Having this result, we are now able to investigate controlla-

bility of a neuron oscillator assembly.
Theorem 2: Consider the finite-dimensional single-input

nonlinear control system

(6)

where and the vector fields
are defined by

...
...

in which , , and for all
. The system as in (6) is controllable.

Proof: It is sufficient to consider the case where
for and , since otherwise they present the same
neuron system. Because for all , the free evolution,
i.e., , of each is periodic for every initial condition

, as shown in (3), with the angular frequency
and the period . Therefore, the free evolution

of is periodic with a least period or is recurrent (see Remark
1). We may then apply Theorem 1 in computing the reachable
set of this system. Let denote the Lie
bracket of the vector fields and , both defined on an open
subset of . Then, the recursive operation is denoted as

for any , setting . The Lie brackets of
and include

...

...

for , positive integers. Thus, , , spans
at all since and are distinct for
. That is, every point in can be reached from any initial

condition ; hence, the system (6) is controllable. Note
that if , , , spans .
Remark 1: If there exist integers and such that the

periods of neuron oscillators are related by for
all pairs, , then the free evolution of is pe-
riodic with a least period. If, however, such a rational number
relation does not hold between any two periods, e.g.,
and , it is easy to see that the free evolution of is al-
most-periodic [39] because the free evolution of each , ,
is periodic. Hence, the recurrence of in (6) together with the
Lie algebra rank condition (LARC) described above guarantee
the controllability [40].
Controllability properties for other commonly used phase

models used to describe the dynamics of neuron or other, e.g.,
chemical, oscillators can be shown in the same fashion.
2) SNIPER PRC: The SNIPER phase model is characterized

by , the neuron’s natural oscillation frequency, and the
SNIPER PRC, , where is a model-dependent
constant [36]. In the absence of any external input, the neuron
spikes periodically with the period . The SNIPER
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PRC is derived for neuron models near a SNIPER bifurcation
which is found for Type I neurons [37] like the Hindmarsh–Rose
model [41]. Note that the SNIPER PRC can be viewed as a spe-
cial case of the Theta neuron PRC for the baseline current .
This can be seen through a bijective coordinate transformation

, , ap-
plied to (2), which yields ,
i.e., the SNIPER PRC with . The spiking property,
namely, and is preserved under
the transformation and so is the controllability as analyzed in
Section II-B1.
More specifically, consider a finite collection of SNIPER neu-

rons with and
, where convention-

ally, for . Similar Lie bracket computations as
in the proof of Theorem 2 result in, for

and thus , since for .
Therefore, the system of a network of SNIPER neurons is
controllable.
3) Sinusoidal PRC: In this case, we con-

sider and
, where for

. This type of PRCs with both positive and
negative regions can be obtained by periodic orbits near the
super critical Hopf bifurcation [19]. This type of bifurcation
occurs for Type II neuron models like Fitzhugh–Nagumo
model [42]. Controllability of a collection of Sinusoidal
neurons can be shown by the same construction, from which

and then for , . Therefore,
the system is controllable.

III. OPTIMAL CONTROL OF SPIKING NEURONS

The controllability addressed above guarantees the existence
of an input that drives an ensemble of oscillators between any
desired phase configurations. Practical applications demand
minimum-power or time-optimal controls that achieve this
goal, which gives rise to an optimal steering problem

s.t.

(7)

where , ; , denoting the
terminal cost, , denoting the running cost,
and are Lipschitz continuous (over the re-
spective domains) with respect to their arguments. For spiking
a neuronal population, for example, the goal is to drive the
system from the initial state, , to a final state

, where , .
Steering problems of this kind have been well studied, for ex-
ample, in the context of nonholonomic motion planning and
sub-Riemannian geodesic problems [43], [44]. This class of op-
timal control problems in principle can be approached by the
maximum principle, however, in most cases they are analyti-
cally intractable especially when the system is of high dimen-
sion, e.g., greater than three, and when the control is bounded,
i.e., .
Note that here we consider the constrained optimal control

with a bound on the control amplitude as modeled in (7), so that
the optimal controls can be derived with respect to any practi-
cally allowable bound . As such, these bounded optimal con-
trol solutions can be practical while without violating the theo-
retical “weak forcing” assumption of the phase model as in (1).
In the following, we present analytical optimal controls for

single- and two-neuron systems and, furthermore, develop
a robust computational method for solving challenging op-
timal control problems of steering a neuron ensemble. Our
numerical method is based on pseudospectral approximations
which can be easily extended to consider any topologies of
neural networks, e.g., arbitrary frequency distributions and
coupling strengths between neurons, with various types of cost
functional.

A. Minimum-Power Control of a Single Neuron Oscillator

Designing minimum-power stimuli to elicit spikes or to miti-
gate the pathological synchrony of neuron oscillators is desired
to improve the efficacy of surgical treatment of certain neuro-
logical diseases, such as Parkinson’s disease and dystonia [14],
[45], [46]. Optimal controls for spiking a single neuron oscil-
lator can be derived using the maximum principle. In order to il-
lustrate the idea, we consider spiking a Theta neuron, described
in (2), with minimum power. In this case, the cost functional
is , and the initial and target states are 0 and
, respectively. We first examine the case when the control is

unbounded.
The control Hamiltonian of this optimal control problem is

defined by , where
is the Lagrange multiplier. The necessary conditions for op-

timality yield , and
by . With these conditions,

the optimal control problem is then transformed to a boundary
value problem, which characterizes the optimal trajectories of

and . We then can derive the optimal feedback law for
spiking a Theta neuron at the specified time by solving the
resulting boundary value problem:

(8)
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where , which can be obtained according to

(9)

More details about the derivations can be found in Appendix B.
Now consider the case when the control amplitude is lim-

ited, namely, , . If the unbounded min-
imum-power control as in (8) satisfies for all

, then the amplitude constraint is inactive and obvi-
ously the optimal control is given by (8) and (9). However, if

for some , then the optimal control
is characterized by switching between and the bound
(see Appendix B):

(10)

where the parameter for in (8) is calculated according
to the desired spiking time by

(11)

The detailed derivation of the control is given in
Appendix B. Fig. 2 illustrates the optimal controls and the
corresponding trajectories for spiking a Theta neuron with
natural oscillation frequency , i.e., , ,
and , at various spiking times that are smaller

and greater than the natural spiking
time with the control amplitude bound .
Because the unconstrained minimum-power controls for the
cases and , calculated according to
(8), satisfy , there are no switchings in these two
cases.

B. Time-Optimal Control of Two Neuron Oscillators

Spiking a neuron in minimum time, subject to a given control
amplitude, can be solved in a straightforward manner. Consider
the phase model of a single neuron as in (1), it is easy to see that
for a given control bound , the minimum spiking time is
achieved by the bang-bang control

,
(12)

which keeps the phase velocity, , at its maximum. The min-
imum spiking time with respect to the control bound , de-
noted by , is then given by

(13)
where the sets and

. Time-optimal control of
spiking two neurons is more involved, which can be formulated
as in (7) with the cost functional and with

(14)

Fig. 2. (a) Minimum-power controls, , for spiking a Theta neuron with
at various spiking times that are smaller and greater

than the natural spiking time subject to . (b) The resulting
optimal phase trajectories following .

where

(15)

Our objective is to drive the two-neuron system from
the initial state to the desired final state

with minimum time, where
. The Hamiltonian for this optimal control

problem is given by

(16)

where and are the multipliers that correspond to
the Lagrangian and the system dynamics, respectively, and
denotes a scalar product in the Euclidean space .
Proposition 1: The minimum-time control that spikes two

Theta neurons simultaneously is bang-bang.
Proof: TheHamiltonian in (16) is minimized by the control

for ,
for ,

(17)

where is the switching function defined by . If
there exists no nonzero time interval over which , then
the optimal control is given by the bang-bang form as in (17),
where the control switchings are defined at . We show
by contradiction that maintaining is not possible for any
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nonzero time interval. Suppose that for some nonzero
time interval, , then we have

(18)

(19)

where denotes the Lie bracket of the vector fields and
. According to (18) and (19), is perpendicular to both vectors
and , where

Since by the non-triviality condition of the maximum
principle, and are linearly dependent on .
One can easily show that these two vectors are linearly depen-
dent either when and , and ,
or and , where . These three fami-
lies of lines represent the possible paths in the state-space where
can be vanished for some non-trivial time-interval. Now we

show that these are not feasible phase trajectories that can be
generated by a control. Suppose that
for some and for some , where . We then
have , irrespective of any control input. Hence,
the system is immediately deviated from the line . The
same reasoning can be used for showing the case of .
Similarly, if for some

and for some , in order for the system to remain on the line
, it requires that

for . However, this occurs only when and
, where , since .

Furthermore, staying on these points is impossible with any con-
trol inputs since for and , the
phase velocities are , which immediately
forces the system to be away from these points. Therefore, the
system cannot be driven along the path . This
analysis concludes that and do not hold simulta-
neously over a non-trivial time interval.
Now, we construct the bang-bang structure for time-optimal

control of this two-neuron system and, without loss of gener-
ality, let .
Definition 1: We denote the vector fields corresponding to

the constant bang controls and by
and , respectively, and call the respective

trajectories corresponding to them as - and - trajectories. A
concatenation of an -trajectory followed by a -trajectory is
denoted by , while the concatenation in the reverse order is
denoted by .
Due to the bang-bang nature of the time-optimal control for

this system, it is sufficient for us to calculate the time between
consecutive switches, and then the first switching time can be
determined by the end point constraint. The inter-switching time
can be calculated following the procedure described in [47],
[48].
Let and be consecutive switching points, and let be

a -trajectory. Without loss of generality, we assume that this
trajectory passes through at time 0 and is at at time . Since

and are switching points, the corresponding multipliers vanish
against the control vector field at those points, i.e.,

(20)

Assuming that the coordinate of , our goal is
to calculate the switching time, , in terms of and . In
order to achieve this, we need to compute what the relation

implies at time 0. This can be obtained by
moving the vector along the -trajectory backward from
to through the pushforward of the solution of the vari-
ational equation along the -trajectory with the terminal condi-
tion at time . We denote by the value of
the -trajectory at time that starts at the point at time 0 and
by the backward evolution under the variational equa-
tion. Then we have

Since the “adjoint equation” of the maximum principle is pre-
cisely the adjoint equation to the variational equation, it follows
that the function is constant along the -tra-
jectory. Therefore, also implies that

(21)

Since , we know from (20) and (21) that the two vec-
tors and are linearly dependent. It fol-
lows that

(22)

where is a constant. We make use of a well-known
Campbell–Baker–Hausdorff formula [49] to expand

, that is,

A straightforward computation of Lie brackets gives

where , and further-
more

Consequently, we have
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which is further simplified to

where

for , 2. This together with (22) yields

(23)

This equation characterizes the inter-switching along the -tra-
jectory, that is, the next switching time can be calculated given
the system starting with evolving along the -trajec-
tory. Similarly, the inter-switching along the -trajectory can
be calculated by substituting with in (23).
Note that the solution to (23) is not unique, and some of the

solutions may not be optimal, which can be discarded in a sys-
tematic way. The idea is to identify those possible switching
points calculated from (23) with that also having the ap-
propriate sign for . We focus on the case where and are
linearly independent, since the case for those being linearly de-
pendent restricts the state space to be the curve

If and are linearly independent, then can be written
as , where

As a result, we can write
. Since we know that at switching points

, the Hamiltonian, as in (16), and the choice of
makes . Therefore, at these points, we have

, and the type of switching can be determined according to
the sign of the function . If , then it is an to
switch since and hence changes its sign from positive
to negative passing through the switching point, which corre-
sponds to switch the control from to as in (17). Sim-
ilarly, if , then it is a to switch. Therefore, the
next switching time will be the minimum nonzero solution to
the (23) that satisfy the above given rule. For example, sup-
pose that the system is following a -trajectory starting with
a switching point . The possible inter-switching
times , , with
can then be calculated according to (23) based on . Thus, the
next switching point is ,

, such that , which corre-
sponds to an to switch.

Fig. 3. (a) Time optimal control for two Theta neuron system with
and to

reach ( ) with the control bounded by and (b) corresponding
trajectories. The gray and white regions represent where is negative and
positive, respectively.

Now in order to synthesize a time-optimal control, it remains
to compute the first switching time and switching point, since
the consequent switching sequence can be constructed there-
after based on the procedure described above. Given an ini-
tial state , the first switching time and point
will be determined according to the target state, e.g.,

, where , in such a way that the
optimal trajectory follows a bang-bang control derived based
on will reach . Under this construction, we may end up
with a finite number of feasible trajectories starting with either
- or -trajectory, which reach the desired terminal state. The

minimum time trajectory is then selected among them.
Fig. 3 illustrates an example of driving two Theta neurons

time-optimally from to with the control bound
, where the natural frequencies of the oscillators are

and corresponding
to , and , . In this
example, the time-optimal control has two switches at
and and the minimum time is 5.61.

C. Simultaneous Control of Neuron Ensembles

The complexity of deriving optimal controls for higher di-
mensional systems, i.e., more than two neurons, grows rapidly,
and it makes sense to find out how the control of two neurons
relates to the control of many. One may wonder whether it is
possible to use a (optimal) control that spikes two neurons to
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manipulate an ensemble of neurons whose natural frequencies
lie between those of the two nominal systems. Of course, if
trajectories of the neurons with different frequencies have no
crossings following a common control input, then the control
designed for any two neurons guarantees to bound trajectories
of all the neurons with their frequencies within the range of these
two nominal neurons, whose trajectories can then be thought of
as the envelope of these other neuron trajectories. We now show
that this is indeed the case.
Lemma 1: The trajectories of any two Theta neurons with

positive baseline currents following a common control input
have no crossing points.

Proof: Consider two Theta neurons modeled by

with positive baseline currents, , and assume that
, which implies since , .

In the absence of any control input, namely, , it is obvious
that for all since . Suppose that

for and these two phase trajectories
meet at time , i.e., . Then, we have

and the equality holds
only when the neurons spike at time , i.e.,

, . As a result, , because
and , and hence there exist no crossings

between the two trajectories and .
Remark 2: Note that the same result as Lemma 1 holds

and can be shown in a similar fashion for both Sinusoidal and
SNIPER phase models, described in Sections II-B2 and II-B3,
when the model-dependent constant if . Con-
sider two Sinusoidal neurons given by ,

, for with and . Suppose
that for and that .
Then, we have , which
yields since and

. Therefore, because
and , and thus there exist no crossings between
the two trajectories and . The SNIPER case can be
shown following the same procedure.
This critical observation extremely simplifies the design of

external stimuli for spiking a neuron ensemble with different
oscillation frequencies based on the design for two neurons with
the extremal frequencies over this ensemble. We illustrate this
important result by designing optimal controls for two Theta and
two Sinusoidal neurons employing the Legendre pseudospectral
method, which will be presented in Section IV. Fig. 4 shows
the optimized controls and corresponding trajectories for Theta
and Sinusoidal neurons with their frequencies belonging to

and , respectively. The optimal controls are
designed based only on the extremal frequencies of these two
ranges, i.e., 0.9 and 1.1 for the Theta neuron model and 1.0 and
1.1 for the Sinusoidal model.
This design principle greatly reduces the complexity of

finding controls to spike a large number of neurons. Although
the optimal control for two neurons is in general not optimal for
the others, this method produces a good approximate optimal
control. In the next section, we will introduce a multivariate

Fig. 4. Controls (top) and state trajectories (bottom) of Theta (left) and Sinu-
soidal (right) PRC neuron models (for , , in (26)). The
Theta model is optimized for ; the Sinusoidal model is optimized
for and the model-dependent constant , both with

interpolation nodes. The gray states correspond to uncontrolled state
trajectories, and provide a comparison for the synchrony improvement provided
by the compensating optimized ensemble control.

pseudospectral computational method for constructing optimal
spiking or synchronization controls.

IV. COMPUTATIONAL OPTIMAL CONTROL OF SPIKING
NEURON NETWORKS

As we move to consider the synthesis of controls for neuron
ensembles, the analytic methods used in the one and two neuron
case become impractical to use. As a result, developing com-
putational methods to derive inputs for ensembles of neurons
is of particular practical interest. We solve the optimal control
problem in (7) using a modified pseudospectral method. Global
polynomials provide accurate approximations in such a method
which has shown to be effective in the optimal ensemble con-
trol of quantum mechanical systems [50]–[53]. Below, we out-
line the main concepts of the pseudospectral method for optimal
control problems and then show how it can be extended to con-
sider the ensemble case.
Spectral methods involve the expansion of functions in terms

of orthogonal polynomial basis functions on the domain
(similar to Fourier series expansion), facilitating high accuracy
with relatively few terms [54]. The pseudospectral method is a
spectral collocation method in which the differential equation
describing the state dynamics is enforced at specific nodes. De-
veloped to solve partial differential equations, these methods
have been recently adopted to solve optimal control problems
[55], [56]. We focus on Legendre pseudospectral methods and
consider the transformed optimal control problem on the time
domain .
The fundamental idea of the Legendre pseudospectral

method is to approximate the continuous state and control
functions, and , by order Lagrange inter-
polating polynomials, and , based on the
Legendre–Gauss–Lobatto (LGL) quadrature nodes, which
are defined by the union of the endpoints, , and the
roots of the derivative of the order Legendre polynomial.
Note that the nonuniformity in the distribution of the LGL
nodes and the high density of nodes near the end points are
key characteristics of pseudospectral discretizations by which
the Runge phenomenon is effectively suppressed [57]. The
interpolating approximations of the state and control functions,
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and can be expressed as functions of the Lagrange
polynomials, , given by [58]

(24)

and . The derivative of
at the LGL node , , is given by

where are elements of the constant
differentiation matrix [54]. Finally, the integral cost functional
in the optimal control problem (7) can be approximated by the
Gauss–Lobatto integration rule, and we ultimately convert the
optimal control problem into the following finite-dimensional
constrained minimization problem:

s.t. (25)

where , ,
, is the target state and are the LGL weights

given by , in which
is the order Legendre polynomial. Solvers for this type
of constrained nonlinear programs are readily available and
straightforward to implement.
Remark 3: (Extension to an infinite ensemble of neuron sys-

tems) The pseudospectral computational method can be readily
extended to consider an infinite population of neurons, for in-
stance, with the frequency distribution over a closed interval,

. In such a case, the parameterized state
function can be approximated by a two-dimensional interpo-
lating polynomial, namely, , based
on the LGL nodes in the time and the frequency domain.
Similarly, the dynamics of the state can be expressed as an alge-
braic constraint and a corresponding minimization problem can
be formed [51].

A. Optimized Ensemble Controls

We can now apply the above methodology to synthesize op-
timal controls for neuron ensembles. Since neurons modeled by
the SNIPER PRC are special cases of the Theta neuron, here
we consider Theta and Sinusoidal neuron models. The compu-
tational method outlined above permits a flexible framework to
optimize based on a very general cost functional subject to gen-
eral constraints. We illustrate this by selecting an objective of
the type

(26)

which minimizes the terminal error and input energy with a rel-
ative scaling given by the constants and . In highly complex
problems, such as those given by ensemble systems described

Fig. 5. Control (top) of a Sinusoidal PRC neuron model ( ) driving
five frequencies, , to the desired targets

at the terminal time with
interpolation nodes. This control yields state trajectories (lower left) and spiking
sequences (lower right), which correspond to when the state trajectories cross
multiples of . A monotonicity constraint ( ) was imposed to prevent
backward evolution of the trajectory. Black coloring indicates a controlled state
trajectory or spike sequence, whereas gray coloring indicates a trajectory or
spike sequence without control.

in Remark 3, this scaling provides a tunable parameter that de-
termines the tradeoff between performance and input energy.
Fig. 4 shows the optimized controls and corresponding trajec-

tories for Theta and Sinusoidal neuron models for ,
, , and belongs to and respec-

tively. In this optimization, the controls are optimized over the
two neuron systems with extremal frequencies, whose trajecto-
ries form an envelope, bounding the trajectories of other fre-
quencies in between, as described in Section III-C. We are able
to design compensating controls for the entire frequency band
solely by considering these upper and lower bounding frequen-
cies. The controlled (black) and uncontrolled (gray) state trajec-
tories clearly show the improvement in simultaneous spiking of
the ensemble of neurons. While a bound is necessary to provide
in practice, the inclusion of the minimum energy term in the cost
function serves to regularize the control against high amplitude
values. These smooth controls and state trajectories are approx-
imated with interpolation nodes.
In Fig. 5, we demonstrate the flexibility of the method to drive

multiple Sinusoidal ( ) neurons to different desired tar-
gets. In particular we seek to simultaneously spike five frequen-
cies with widely dispersed frequency values at a time different
from their natural period. In this figure we consider the frequen-
cies and design controls to
drive these systems to , respectively, at a
time . The control shown in the figure is opti-
mized for minimum energy ( , ) and achieves a
transfer with terminal error of (here
we impose the desired terminal state as an additional constraint,
rather than incorporate it into the cost function). We also in-
clude the realistic constraint for the state to be monotonically
increasing ( ), which prohibits backward evolution of the
neuron. The spike train shows that the controls are able to ad-
vance the firing of each neuron so that all spike simultaneously
at the desired terminal time. Again the gray coloring indicates
uncontrolled trajectories or spike trains and offers a comparison
of improvement in synchrony.
Similarly, Fig. 6 presents the controls and state trajectories

corresponding to the minimum energy transfer for Theta neu-
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Fig. 6. Controls and amplitude constrained controls, , upper left
and right respectively, of a Theta PRC neuron model driving five fre-
quencies, , to the desired targets

at the terminal time with
interpolation nodes. These controls yield highly similar state trajec-

tories (lower left, shown for the unconstrained control) and spiking sequences
(lower right, shown for the constrained control), which correspond to when the
state trajectories cross multiples of . A monotonicity constraint ( )
was imposed to prevent backward evolution of the trajectory. Black coloring
indicates a controlled state trajectory or spike sequence, whereas gray coloring
indicates a trajectory or spike sequence without control.

rons of five frequencies
driving them to when . In
this case, we demonstrate the capacity to synthesize both un-
constrained and constrained ( ) controls. In both cases, the
state trajectories (unconstrained case) and spike sequence (con-
strained case) show the monotonic state evolution, achieving
the desired terminal state within an error ( ) of
6 (unconstrained) and 3 (constrained).

V. CONCLUSION

In this paper, we considered the control and synchroniza-
tion of a neuron ensemble described by phase models. We
showed that this ensemble system is controllable for various
commonly used phase models. We also analytically derived
minimum-power and time-optimal controls for spiking single
and two neuron systems. In addition, we adopted a computa-
tional pseudospectral method for constructing optimal controls
that spike neuron ensembles, which demonstrated the under-
lying controllability properties of such neuron systems. This
work characterizes the fundamental limit of how the dynamics
of neurons can be perturbed by the use of an external input,
and the resulting methodology can be applied not only to
neuron oscillators but also to any oscillating systems that can
be represented using similar model reduction techniques such
as biological, chemical, electrical, and mechanical oscillators.
A compelling extension of this work is to consider networks of
coupled oscillators, whose interactions are characterized by a
coupling function acting between each pair of oscillators. For
example, in the well-known Kuramoto’s model, the coupling
between the -pair is characterized by the sinusoidal func-
tion of the form [18]. The procedure
presented in Theorem 2 can be immediately applied to examine
controllability of interacting oscillators by investigating the
recurrence properties [40] of the vector field , and the Lie
algebra . Similarly, the pseudospectral method
presented in Section IV and its extension addressed in Remark

3 can be employed to calculate optimal controls for spiking or
synchronizing networks of coupled neurons with their natural
frequencies varying on a continuum. Because phase models
are reductions of original higher dimensional state-space
systems, there is a fundamental need to explore the limits of
such approximations. Therefore, applying the optimal controls
derived based on phase-reduced models to the corresponding
full state-space models is an important validation and essential
future work.

APPENDIX A
CHOW’S THEOREM

Theorem 3: (Versions of Chow’s Theorem) Let
be a collection of vector fields

such that the collection is
a) analytic on an analytic manifold . Then given any
point , there exists a maximal submanifold

containing such that
.

b) on a manifold with dim ( )
constant on . Then given any point , there
exists a maximal submanifold containing
such that .

For more details about Chow’s theorem, the reader can refer to
[38], [59], [60].

APPENDIX B
OPTIMAL CONTROL OF A SINGLE THETA NEURON

Unbounded Minimum-Power Control of a Theta Neuron:
The minimum-power control of a single Theta neuron is formu-
lated as

s.t.

We then can form the control Hamiltonian,

(27)

where is the Lagrange multiplier. The necessary conditions
for optimality from the maximum principle yield

(28)

and . Thus, the optimal control
satisfies

(29)

With (29) and (28), this optimal control problem is transformed
to a boundary value problem, whose solution characterizes the
optimal trajectories

(30)
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(31)

with boundary conditions and , while
, and are unspecified.

Additionally, since the Hamiltonian is not explicitly depen-
dent on time, the optimal triple satisfies
, , where is a constant. Together with (29) and
(27), this yields . Since

, , where is undetermined. The optimal
multiplier can be found by solving the above quadratic equa-
tion, which gives

(32)
and then, from (30), the optimal phase trajectory follows

(33)

Integrating (33), we find the spiking time in terms of the initial
condition

(34)

Note that we choose the positive sign in (33), which corresponds
to forward phase evolution. Therefore, given a desired spiking
time of the neuron, the initial value can be found via the
one-to-one relation in (34). Consequently, the optimal trajecto-
ries of and can be easily computed by evolving (30) and (31)
forward in time. Plugging (32) into (29), we obtain the optimal
feedback law for spiking a Theta neuron at time ,

(35)
Bounded Minimum-Power Control of a Theta Neuron:

Given the bound on the control amplitude, if
for all , then the amplitude constraint is inactive
and obviously the bounded minimum-power control is given
by (35) and (34). If, however, for some time
interval, e.g., , which alternatively cor-
responds to for , , and

, the amplitude constraint is active
and the optimal control will depend on . We first consider

for and observe in this case that
is the minimizer of the Hamiltonian as in (27),

since is convex in . The Hamiltonian for this interval is
then given by .
Because, by the maximum principle, is a constant along
the optimal trajectory, the Lagrange multiplier is given by

which satisfies the
adjoint (28). Therefore, is optimal for .
The value of the constant can be determined by
applying the initial conditions, and to
(27). Similarly, we can show that is optimal when

for some . Consequently,
the constrained optimal control can be synthesized according
to (10) and (11).

Note that the number of time intervals that de-
fines the number of switches in the optimal control law. Specif-
ically, if for time intervals, then the optimal
control will have switches. Here we consider the simplest
case, where the optimal control has only two switches, which is
actually the only case for the Theta neuron model. As a result,
suppose that for only one time interval, and then
there are two switching angles and at which

. These two conditions, together with (11), deter-
mine the unknown parameters , , and that characterize
the bounded optimal control, , as given in (10) for the speci-
fied spiking time . Note that the range of feasible spiking times
is determined by the bound of the control amplitude . A com-
plete characterization of possible spiking range can be found in
[27].
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