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Abstract We introduce a quantitative measure of robustness of network control-

lability. Given a set of control nodes which drive the network, we investigate the

effect of edge removal on the number of controllable nodes. We find that the mean

degree of the network is a major factor in determining the robustness of random

networks. Nonetheless, a comparison between real and random networks indicates

a statistically significant difference which points to additional factors that influence

the robustness of control of real complex networks.

1 Introduction

Mounting evidence confirms that network-oriented studies can uniquely character-

ize aspects of complex dynamics in wide ranging areas of biology, engineering, and

social science: e.g., interaction of proteins in cellular pathways, diffusion of infor-

mation within human communities, and optimal routing strategies on the internet

[9, 5, 1]. However, as researchers seek techniques for engineering or influencing

such complex systems, they are confronted by questions of controllability.

Real-world networks bring with them their own unique set of attributes and re-

quirements not found in typical control systems. For example, in real complex net-

works (e.g., cellular biochemical pathways, social networks, and sprawling internet

physical connectivity) external controls are not predefined and mechanisms for con-

trols are not known, a priori. Furthermore, the structure of such systems is unlikely

to be static over time and space: cascades of fundamental biochemical interactions

differ among individuals, friendships may be made or lost, and internet connectivity

changes as individual servers come online or fall offline. Thus, a schema for con-

Justin Ruths

Singapore University of Technology and Design, 20 Dover Drive, Singapore, e-mail:

justinruths@sutd.edu.sg

Derek Ruths

McGill University, 3480 University Street, Montreal, Canada e-mail: derek.ruths@mcgill.

ca

1



2 Justin Ruths and Derek Ruths

trolling such systems over long periods of time must be robust to these frequent

and unpredictable structural changes. Because the addition and removal of edges

and nodes in a network has no clear analog to modifications to a standard control

system, this problem of robust network control presents a new challenge both to the

network and control communities.

In this paper, we first define a quantitative measure of the robustness of a given

control scheme for a given network. Second, we develop the necessary computa-

tional techniques to use our measure and network sampling to assess the statistical

significance of robustness observed in a real-world network. This second result al-

lows us to consider for the first time whether the controllability of real networks is

more or less robust than might be expected at random.

2 Background

We consider a linear dynamic model of the directed network graph G(A), which is

composed of n nodes and L directed edges between nodes in the network. System-

atically analyzing linear models is a key step in generalizing to broader classes of

models, such as nonlinear dynamics. In addition, there are a large number of net-

work phenomena that exhibit a good fit to a linear time-invariant model of the form

[8, 13, 10], ẋ(t) = Ax(t), where the state x(t) ∈ R
n is the value of all of the nodes at

time t and A ∈ R
n×n is the transpose of the adjacency matrix of the network, such

that the value Ai, j is the weight of a directed edge from node x j to node xi and zero

if there is no such edge. In what follows, we study the controlled network G(A,B),
corresponding to adding m control nodes yielding the form, ẋ(t) = Ax(t)+ Bu(t)
where the control u(t) ∈ R

m and B ∈ R
n×m models the effect of the controls on the

network. Determining the minimal B to make the graph G(A,B) completely con-

trollable has been a topic of particular interest [11, 3, 4]. A networked system is

controllable if the controls are able to guide the system state, the value of the nodes,

from an initial configuration x(t0) = x0 ∈R
n to a final configuration x(t1) = x1 ∈R

n.

The minimum number of control nodes which makes the G(A,B) completely con-

trollable (mc) has been shown to correlate with the degree distribution, which is a

measure of edges leaving nodes of the network [8].

Due to space constraints, we are unable to review the terms that arise in the

following sections. These terms are well defined by a number of sources, however,

they are likely new to many, even well-versed, network scientists [7, 11, 3, 4]. In

particular, we direct you to review the concept of structural controllability and its

relation to generic rank of the system [A B]; cacti structure of a network formed by

paths and cycles of connected nodes; and maximum matching algorithm to find the

largest set of nodes that can be uniquely paired amongst themselves using edges

present in the network.

3 Methods

We discuss two novel measures of the robustness of a control scheme given by B

to changes in the network structure through edge removal. The first is a measure
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that assigns a value to a network/control scheme pair based on how reachability

responds to the removal of edges from the network. The second is a computational

approach to estimating the statistical significance of a network/control scheme pair’s

robustness. This answers the question: how much more robust is the network/control

pair than might be expected at random?

Fig. 1 The robustness profiles of Erdos-Renyi

networks with the same number of original edges.

The number of controllable nodes nr of five ER

networks are shown as a function of the num-

ber of edges, ℓ, removed. The displayed values

are the averages of 50 separate percolation se-

quences, with corresponding error bars. The ro-

bustness measure, R, is given as the normalized

area under this curve.

3.1 Measuring Robustness

Under fully structural controllable conditions, all nodes in the network are reachable

by the specified control scheme. However, as edges are removed from the network

(hereafter, percolated) some nodes will become unreachable. For a given sequence

of edge percolations, the number of unreachable nodes will depend on the location

of the controls in the network and the local and global structure of the network itself.

Conceptually, given two different control schemes and a sequence of edge percola-

tions, the more robust control scheme is the one that maintains a greater number of

reachable nodes in the percolated network (in which the edges are missing).

In order to derive a quantitative measure of robustness, first consider that we

can incrementally remove edges from a network with a specified control scheme

and compute the number of nodes in the network that are still controllable. Such

an iterative calculation will yield curves like those shown in Figure 1, which we

call robustness profiles. In such a plot, the x-axis is the fraction of edges that have

been percolated and the y-axis is the fraction of nodes that are reachable in the

percolated network. The value of point ℓ/L corresponds to the fraction of nodes

that are reachable after removing ℓ/L percent of the edges present in the original

network. Curves will be monotonically decreasing since removing an edge cannot

bring a new node under control.

Every combination of network (G), control scheme (B), and edge percolation

sequence (ξ ) has its own robustness profile, which we can summarize by integrating

to find the area under the curve. We call this value the integrated percolation (IP)

robustness,
RG,B,ξ =

1

nL

L

∑
ℓ=0

nr(G− ξ [1 : ℓ],B) (1)

where G is the network, n is the number of nodes in the network, L is the number

of edges, B is the control scheme, nr(G
′,B′) is the number of reachable nodes in the

graph G′ with controls B′, and ξ [1 : ℓ] is the first ℓ edges in the edge percolation

sequence. G− ξ [1 : ℓ] is graph G with the first ℓ edges in ξ removed.
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Because the robustness profile always falls within a unit box (i.e., both axes of

the plot are normalized to 1), the intuitive interpretation of RG,B,ξ is as the percent of

the unit box that falls under the curve. This has the desired effect of returning larger

values for more robust control schemes: if we fix the network and edge percolation

sequence, a control scheme that retains more reachable nodes will have a curve with

more of the area of the unit box under it.

Given the ability to compute the IP robustness for arbitrary edge percolation se-

quences, we can obtain an estimate of the robustness of a network-control scheme

pair (hereafter, a configuration) by averaging RG,B,ξ over a large number of ran-

domly generated edge percolation sequences, Ξ = {ξ1,ξ2, ...},

RG,B =
1

|Ξ | ∑
ξ∈Ξ

RG,B,ξ . (2)

We call this measure the mean integrated percolation (MIP) robustness. Analysis on

a wide spectrum of networks have shown that, in practice (see Figures), the value of

RN,B,ξ is quite consistent across different percolation sequences (i.e., the standard

deviation for the statistic is diminishingly small). This consistency lends RG,B to

being a reliable measure of robustness of a network-control scheme pair to arbitrary

edge percolation processes. This will be further explored and validated in Section 4.

Hereafter, mentions of robustness refer to MIP robustness. Standard deviation

will be shown in plots to indicate the variability in the estimate.

3.2 Assessing Real Network Robustness

In the preceding subsections, we were interested in simply being able to compute

and compare the robustness of different network-control configurations. Such tech-

niques are not sufficient, however, to quantify the extent to which real networks are

designed for robust control. The notion of “designed robustness”, whether through

engineering or evolution, suggests that such networks would be expected to have

more robustness than might be observed by chance. In this subsection we formalize

this notion and provide a method for estimating the probability of observing a given

network’s MIP robustness by chance.

A standard practice in network science for establishing the statistical significance

of a given network feature is to compare the feature in the network of interest to the

same feature in a set of synthetic networks drawn from a null model (e.g., [6, 9]). In

this instance, we will compare the robustness of the network of interest, G0, to the

robustness of a set of randomized networks, Z = {G1,G2, ...}. In order to facilitate

comparison, the random networks must match the number of nodes and edges in

the original network (ni = n0 and Li = L0 for i ≥ 1). Furthermore, we preserve the

degree distribution of the original network in the random networks: this is done

because, as we will see, mean degree is strongly associated with narrow ranges of

robustness. Thus, the degree distribution of the network alone can explain much

of its robustness. By holding degree distribution constant, our results estimate the

extent to which more higher-order degree features and local motifs present within

the real networks lend it to robust control.
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To perform an actual comparison, a large number of random networks satisfying

the above constraints are generated. The average MIP robustness is computed for

the null model for a range of control scheme sizes: RZ(m) = 1
|Z| ∑G∈Z RG,Bm . The

MIP robustness for the original network is also computed for a range of control

scheme sizes: R0(m) = RG0,Bm . For a given value of m, RZ(m) and R0(m) can be

directly compared. Furthermore, since both measures are means, the overlap in their

standard deviations can be used to assess the statistical significance of the original

network’s MIP robustness score.

4 Results & Discussion

In this section, we apply our definitions and methods to understanding two specific

questions. First, we quantify the robustness of a class of synthetic networks and

explore the connection between degree distribution and MIP robustness. Second, we

determine the extent to which real networks are more robust than might be expected

by chance, which is a first step towards understanding whether robust control is a

feature designed into some complex systems.

4.1 Random Networks

Fig. 2 The MIP robustness of Erdos-Renyi net-

works. We compute the robustness profiles and

the corresponding MIP robustness measures,

RG,B, for a variety of ER networks. We plot the

robustness measure versus the mean degree 〈k〉=
L/n.

Random network models have the ca-

pacity to generate large numbers of net-

works which share certain properties,

but are random in every other way. For

this reason, such network models have

been fruitfully used to study the im-

pact of specific network properties on

phenomena of interest. Here we em-

ploy them for similar purposes: to un-

derstand the extent to which network

properties influence MIP robustness.

There are many different random net-

work models; in the present paper we

focus on Erdos-Renyi (ER) networks

which are generated by cycling through

all pairs of nodes and establishing an

edge between these nodes with proba-

bility p [2]. The number of edges in an

ER network is, on average, L = n2 p.

Figure 1 depicts the effect of edge removal on the number of controllable nodes.

The generated ER networks have the same number of edges (L = 2000) with vary-

ing number of total nodes (n ∈ {100,150,200,250,300}). In addition the number

of controls is kept constant, m = 1, which is crucial for a fair comparison. The ro-

bustness profiles in Figure 1 are the result of averaging 50 percolation sequences for

each network, as described by Equation 2. If we start with a control scheme (B) that
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makes G(A,B) fully controllable, the robustness profile will start with nr(0) = n and

end at nr(L) =m. Although the curves in Figure 1 are derived for a single realization

of each ER network, we have observed that any ER network with the same n and L

parameters will result in effectively indistinguishable robustness profiles, which we

omit here for brevity.

Figure 1 shows that changing the number of nodes changes the curvature of the

robustness profile, with lower numbers of nodes yielding a higher MIP robustness

measure, as given by Equations 1 and 2. This result agrees with our intuition based

on cacti-based control scheme construction: if the network is more dense, there are

more edges for each node. In this case, it is more likely that m stems (node-disjoint

paths) will be able to cover a larger part of the network. Moreover, more edges per

node increase the chance that an alternative path exists around a location where an

edge was removed.

With this insight we now aim to characterize the property (or properties) that help

to determine the robustness of a controlled network. We now broaden the parameters

used to generate the ER networks. In addition to those shown in Figure 1 we include

several ER networks with the same number of nodes (n = 200) and also several

with the same density (p = 0.05). Again we compute the robustness profiles and the

corresponding MIP robustness measures for 50 percolation sequences. These were

plotted against several choices of network parameters, such as n, L, and p. However,

none had as strong a correlation as the mean degree 〈k〉, which is shown in Figure

2. This strong correlation supports the idea that there may be a causal relationship

between degree-based network properties and the network’s MIP robustness. More

generally, the presence of a strong correlation with mean degree confirms that as-

pects of network structure can, indeed, influence the robustness of controllability,

suggesting that other features besides mean degree may also confer some amount of

robustness.

4.2 Real Networks

Although random networks can reveal certain underlying concepts of control ro-

bustness, our ultimate goal is to quantify, characterize, and engineer robustness in

real-world systems. Fundamental to this investigation is determining whether real

networks are more or less robust than might be expected by chance. For example,

do certain systems have robust controllability as a design criterion whereas others

sacrifice this in favor of other attributes such as performance, adaptability, and ef-

ficiency? We study the difference in MIP robustness between several real networks

and their cooresponding degree-preserving random networks, including a food web,

email correspondence (the East Anglia email dataset), and protein networks [14, 12].

We chose these networks because the concept of controllability is directly relevant to

each: controls can disrupt or correct disruptions within the food chain of an ecosys-

tem, influence the spread of information among a population, and be used to alter

the trajectory of biochemical systems.

The comparison of robustness between two arbitrarily sized and controlled net-

works is challenging. In order to make such a comparison possible between a real
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and a random network, we maintained the degree distribution of the network as

well as its number of nodes and edges. We further consider the MIP robustness

differences for a range of numbers of controls (m). In Figure 3 we show the MIP ro-

bustness for both real and shuffled networks, constraining the control set to a size m,

where m ranges between 1 to n. The dashed and dotted vertical lines correspond to

the number of controls, needed to fully control the real (mreal
c ) and shuffled (mshuff

c )

networks, respectively. For all m < mreal
c , we observe that the shuffled networks (de-

noted by ×) are consistently more robust than the original real network (denoted by

�). However, after mreal
c , the relative robustness is reversed and the real networks are

more robust. In a statistical t-test of the MIP robustness values, this switch is con-

firmed with a confidence beyond 0.05 for all tested networks (note that as m/n → 1,

the robustness difference disappears since both networks approach fully controllable

even under percolation). This confidence is upheld prior to the dashed line and sev-

eral nodes past it until the measures begin to coincide at the far right. In the upper

and lower subplots, corresponding to the food web and yeast protein networks, the

trends have a statistical significance beyond 0.0005.

Fig. 3 The MIP robustness of real networks.

In order from top to bottom, we compute

robustness profiles and the corresponding

MIP robustness measures (�) for a food

web, email correspondence, and yeast pro-

tein networks. We compare these results with

degree-preserving shuffled networks (×).

The dashed and dotted vertical lines corre-

spond to the number of controls, mc, needed

to fully control the real and shuffled net-

works, respectively. A t-test confidence level

beyond 0.05 confirms the definitive switch

from shuffled to real networks being more

controllable before and after the dashed line,

respectively. For the food web and yeast plots

this confidence is beyond 0.0005.

These observations provide an intriguing starting point for deeper investigation

into the basis and origins of robust control in real networks. The fact that the switch-

ing behavior is both significant and conserved across networks drawn from such dif-

ferent real-world systems suggests that certain kinds of control robustness may be

preferred by quite diverse natural systems. For example, the fact that robustness is

enriched only for m ≥ mreal
c , may imply that real systems are trading off robustness

for other desirable attributes such as efficiency or adaptability. The fact that these

real networks are more robust than networks drawn from degree-preserving random
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models suggests that more subtle and, potentially, local structures are involved in

implementing robust control.

5 Conclusion & Future Work

Where complex systems are useful or relevant to human pursuits, there will be an

interest in the ability control and influence them. Because many natural systems

experience frequent and unpredictable structural changes, we seek controls that are

robust to changes in the structure of the controlled system.

In this paper, we have approached the issue of characterizing and comparing

the robustness of networks. We have outlined a methodology for investigating the

robustness of networks under edge removal, which augments the current methods in

structured systems and graph theory literature.

There are a number of promising directions for future work in this area. In order

to compare two real-world networks, we must develop a formal way of comparing

robustness between control configurations of different sizes. Additionally, in order

to understand the ways in which control robustness can be constructed, a careful

assessment is needed of the contributions that different network properties (e.g.,

clustering, centrality, motifs) make to the robust controllability of a network.
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