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Optimal Control of Inhomogeneous Ensembles
Justin Ruths and Jr-Shin Li, Member, IEEE

Abstract—Inhomogeneity, in its many forms, appears frequently
in practical physical systems. Readily apparent in quantum sys-
tems, inhomogeneity is caused by hardware imperfections, mea-
surement inaccuracies, and environmental variations, and subse-
quently limits the performance and efficiency achievable in current
experiments. In this paper, we provide a systematic methodology
to mathematically characterize and optimally manipulate inhomo-
geneous ensembles with concepts taken from ensemble control. In
particular, we develop a computational method to solve practical
quantum pulse design problems cast as optimal ensemble control
problems, based on multidimensional pseudospectral approxima-
tions. We motivate the utility of this method by designing pulses
for both standard and novel applications. We also show the conver-
gence of the pseudospectral method for optimal ensemble control.
The concepts developed here are applicable beyond quantum con-
trol, such as to neuron systems, and furthermore to systems with
by parameter uncertainty, which pervade all areas of science and
engineering.

Index Terms—Convergence of numerical methods, optimal con-
trol, robust control.

I. INTRODUCTION

R ECENT advancements in quantum research have en-
abled breakthroughs in biology, chemistry, physics,

engineering, and medicine including better methods to under-
stand the structure of macromolecules used in biochemical
signaling and drug delivery, to facilitate the fast and efficient
storage of information, and to yield higher resolution med-
ical images for diagnosis and treatment of early stage cancer
[1]–[3]. Most, if not all, measurements and manipulations of
quantum systems are achieved through the appropriate design
of externally applied time-varying electromagnetic pulses,
or controls [1]. These pulses guide the system to produce a
desired time-evolution or a specific terminal state. The design
of such pulses is made significantly more difficult by inherent
variations within the systems of interest. Inhomogeneity is one
of the fundamental obstacles for the practical implementation
and physical realization of quantum science and quantum
technology. In classical systems the dispersions resulting from
inhomogeneity is often compensated for by feedback control.
Significant research effort has been employed in the area of
quantum feedback control with several promising theoretical
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and practical discoveries in recent years [4], [5]. There is still
a large portion of quantum systems for which state feedback
is either impractical or difficult to achieve due to the short
timescales and large state-space of quantum phenomena. These
limitations motivate us to consider the open-loop synthesis of
optimal pulses that achieve a desired goal while compensating
for the inhomogeneity present in the quantum ensemble.

The behavior of a bulk quantum system is the aggregate be-
havior of a large ensemble of individual quantum systems. Al-
though in isolation these individual systems, e.g., atoms, spins,
qubits, etc., are fundamentally identical, in a physical system
they are distinct due to different chemical and electromagnetic
environments. This variation across the ensemble exhibits itself
at the macroscopic level as variation in the values of parameters
that characterize the dynamics of the bulk quantum system [6].
For example, adjacent atoms within the same macromolecule
shield the full strength of the applied external magnetic fields.
Varied levels of shielding create a dispersion in the frequency of
the quantum spins, which is observed as inhomogeneity in the
value of the natural frequency of the bulk sample. In addition,
hardware imperfection causes attenuation in the applied elec-
tromagnetic pulse over the ensemble and can be represented as
variation in a scaling factor multiplying the applied pulse. Often
several pulses are applied in sequence in order to achieve an in-
tricate time-evolution of the system [7]. Each pulse is designed
assuming an exact (usually uniform) initial system state, how-
ever, in practice, the previous pulses only prepare the system to
within a neighborhood of the assumed initial state. The additive
error in such a pulse sequence can cause significant performance
degradation.

Guiding the evolution of inhomogeneous ensembles is a cen-
tral idea in the design and implementation of quantum experi-
ments. As such, there is a rich literature of methods addressing
this class of challenging problems. Initially these were intuitive
or ad-hoc methods motivated by the symmetry of the state space
[7], [8], which were then augmented with various heuristic and
specifically designed techniques [9], [10]. More recently pulse
design problems have been cast as optimal control problems
[11]–[15]. Here we present a methodology that addresses the
difficulties of the current methods and is easily generalizable
to any inhomogeneous ensemble or uncertain system. The pro-
posed method has both theoretical, such as convergence rates
and computational complexity, and practical, such as ease of im-
plementation and computation time, amd advantages.

In this paper, we describe a framework to pose robust
quantum pulse design problems in the language of mathemat-
ical control theory with support from new theoretical concepts
in ensemble control [16]–[18] and computational advances
in multidimensional pseudospectral methods adapted for en-
semble systems [6], [19]. In a larger context, we provide a
rigorous methodology to study and control inhomogeneous
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ensembles or systems with parameter uncertainty from any
area or application. In the following section, we introduce
the problem statement as well as our theoretical and compu-
tational tools. In Section III, we take several examples from
nuclear magnetic resonance (NMR) in liquids modeled by
the bilinear Bloch equations, including broadband excitation
in the presence of inhomogeneity, a sequence of broadband
pulses robust to variation in the initial conditions, and systems
with a time-varying frequency. We then provide empirical and
theoretical justifications that the solutions computed using the
pseudospectral method converge to solution of the original
optimal control problem.

II. MOTIVATION & THEORY

In this section, we review the underlying concepts involved
in our approach to design robust quantum pulses as well as the
broader mathematical formulations necessary to characterize
and solve such design problems. In what follows, we present
a highly general model of quantum dynamics, which demon-
strates the abundance of inhomogeneity in these problems and
motivates studying the control of a family of parameterized
systems. We then show how the notion of ensemble control is
well suited for dealing with the inherent variation and uncer-
tainty in practical quantum systems and formulate a new type
of optimal control problem based on ensemble control.

A. Quantum Dynamics and Pulse Design

The dynamics of a quantum system is given by the time-evo-
lution of its density matrix. We consider here general dynamics
in which the system may have interaction with the environment
that leads to dissipation in the system state. Under the Mar-
kovian approximation, where the environment is modeled as an
infinite thermostat which has constant state, the evolution of the
density matrix can be written in Lindblad form in terms of the
system Hamiltonian and superoperator which model
the unitary and nonunitary dynamics [20], respectively,

The expression of the Hamiltonian has components corre-
sponding to free evolution Hamiltonian, , and the control
Hamiltonians ,

where are externally applied electromagnetic pulses that
can be used to manipulate, or guide, the evolution of the system
state. Typical pulse design problems involve designing these
pulses, or controls, to bring the final state of the density matrix

as close as possible to a target operator. This problem can
be transformed, by taking the expectation values of the opera-
tors involved in the state transfer, to the vector-valued, bilinear
control problem, and given by

(1)

where corresponds to the drift evolution repre-
senting and , corresponds to the controlled
evolution representing , and [21]. While (1) accu-
rately represents the classical interaction of magnetic fields, in
practice the effective fields—and, therefore, the matrices repre-
senting the Hamiltonians and —show variation in mag-
nitude due to different chemical environments and equipment
errors. The system can no longer be described by a single equa-
tion but rather by a family of equations with variation in the
parameters that characterize the motion, which motivates us to
consider the dispersion in the dynamics as a continuum param-
eterized by the system values

(2)

where is a -dimensional interval representing
the parameters exhibiting variation [19]. In a more general
formulation the matrices representing the Hamiltonians can be
time-dependent, and , as in the
case of random fluctuations.

Designing a single set of controls (pulses) that simulta-
neously steer an ensemble of dispersive systems in (2) from an
initial state to a desired final state is a fundamental problem in
the control of quantum systems. Moreover, similar parameter-
ized structures can be found across all areas of science and engi-
neering, such as in neuroscience where a single stimulus is used
to trigger a simultaneous firing of neuron oscillators with dis-
tinct oscillation frequencies [22]. In these applications full state
feedback, which is required in most current methods to com-
pensate for system uncertainty, is impractical to obtain due to
the sheer number of members (and states) within the ensemble.
Averaged measurement is possible in some applications; how-
ever, this type of measurement restricts the forms of available
feedback. It is, then, of particular importance to consider the
corresponding open-loop control problem.

B. Optimal Ensemble Control

Systems as in (2) motivate the study of a new class of inho-
mogeneous control systems. Ensemble control [17] is a mathe-
matical framework to characterize parameterized systems of the
form

(3)

where , , , with , and
smooth functions of their respective arguments. The signif-
icant challenge of this class of control problems originates
from requiring the same open-loop control, to guide the
continuum of systems from an initial distribution, , to
a desired final distribution, over the corresponding function
space. Fundamental properties of these systems, such as con-
trollability, are of particular interest—specifically addressing
what types of inhomogeneities can be compensated for robustly.
For example, it has been shown that the controllability of an
ensemble of bilinear Bloch equations, used as a sample system
in this paper (see Section III), corresponds to the synthesis of
appropriate polynomials [16] and controllability conditions for
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an ensemble of time-varying linear systems are related to the
Picard criterion of Fredholm integral equations of the first kind
[17]. These concepts have also been approached with func-
tional analysis techniques from the study of partial differential
equations and have investigated, in particular, the exact and
approximate ensemble controllability of the Bloch equations
with bounded and unbounded controls, finite and infinite time,
as well as finite and infinite parameter domains [23].

Subsequently, given dynamics and initial and final distribu-
tions, we seek methods to construct controls for such steering
problems. As with any control problem, in general there may
be many possible solutions that satisfy a state-to-state ensemble
control problem. In addition there are often benefits, penalties,
and limitations that are associated with the physical system,
which can be used to rank the different solutions. Such practical
considerations lead to considering an optimal control problem
based on the ensemble dynamics in (3) which includes a cost
functional (with terminal, , and running, , cost terms) to be
minimized as well as possible endpoint and path constraints (
and , respectively),

s.t.

(4)

A rich literature exists on parametric optimal control which has
a similar formulation to that of optimal ensemble control (4).
Parametric optimal control focuses on sensitivity analysis, with
respect to system parameters, of a perturbed optimal control
problem [24], while ensemble control synthesizes robust com-
pensating controls for possibly large parameter dispersions.

An optimal nonlinear control problem of this form is, in gen-
eral, analytically intractable. Computational methods are then
required to solve such exceedingly complex optimal ensemble
control problems. The idea from our previous work that con-
structing appropriate polynomials is a key tool in characterizing
the controllability of ensemble systems of interest motivates the
use of polynomials within the computational framework [16].
Below, we review the main ideas of the previously established
pseudospectral method for optimal control to lay the foundation
for our developed extension to optimal ensemble control prob-
lems. In Section IV, we complete this framework with a proof
of convergence of this numerical method.

Without loss of generality, we consider a general con-
tinuous-time optimal control problem defined on the time
interval , which can be achieved by a simple affine
transformation.

1) Problem 1 (Continuous-Time Optimal Control):

(5)

s.t. (6)

(7)

(8)

(9)

where is the terminal cost; the running cost, ,
where is the space of continuous functions with classical
derivatives, and dynamics, , where is the space
of -vector valued functions, with respect to its argu-
ments, the state and control ; and
are terminal and path constraints, respectively; is the

-vector valued Sobolev space. The norm associated with the
Sobolev space with , , is given with respect to the

norm [25]

C. Pseudospectral Method

The pseudospectral method was originally developed to solve
problems in fluid dynamics and since then has been success-
fully used for optimal control [26]–[28] and applied to various
areas [21], [22]. Pseudospectral discretization methods use ex-
pansions of orthogonal polynomials to approximate the states of
the system and thereby inherit the spectral accuracy character-
istic of orthogonal polynomial expansions (the coefficient
of the expansion decreases faster than any inverse power of )
[25]. Through special properties, derivatives of these orthogonal
polynomials can be expressed in terms of the polynomials them-
selves, making it possible to accurately approximate the differ-
ential equation that describes the dynamics with an algebraic
relation imposed at a small number of discretization points. An
appropriate choice of these discretization points, or nodes, fa-
cilitates the approximation of the states as well as ensuring ac-
curate numerical integration through Gaussian quadrature.

As a collocation (or interpolation) method, the pseudospectral
method uses Lagrange polynomials to approximate the states
and controls of the optimal control problem

(10)

(11)

where and
because the Lagrange polynomials have the property

, where is the Kronecker delta function and are the
interpolation nodes [29]. Therefore, the coefficients and
are the discretized values of the original problem and become
the decision variables of the subsequent discrete problem.

Although the interpolation with Lagrange polynomials dis-
cretizes the original problem, we require a means to ensure that
both the integral in the cost functional is computed accurately
and the dynamics are obeyed. The integral can be approximated
through Gauss quadrature; here we use Legendre polynomials
as the orthogonal basis for the pseudospectral method. The Le-
gendre–Gauss–Lobatto (LGL) quadrature approximation

(12)
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Fig. 1. Runge phenomena is aptly demonstrated by approximating ���� �
������ � �� with an � � �� order interpolating polynomial using uniform
(left) and LGL (right) nodes.

is exact if the integrand and the nodes ,
where denotes the set of polynomials of degree at most

and where
are the LGL nodes determined by the deriva-

tive of the order Legendre polynomial, , and the in-
terval endpoints [25]. To set the notation, the operator will
perform a collocation approximation using the LGL nodes, un-
less stated otherwise. The effect of this node choice can be seen
in Fig. 1.

Using the LGL nodes, we can rewrite the Lagrange polyno-
mials in terms of the orthogonal Legendre polynomials, which
is critical to inherit the special derivative and spectral accu-
racy properties of the orthogonal polynomials despite using La-
grange interpolating polynomials. Given , we can
express the Lagrange polynomials as [30]

The derivative of (10) at is then

(13)

where is the constant differentiation matrix [31].
We are now able to write the discretized optimal control

problem using (10)–(13). We transform the continuous-time
problem to a constrained optimization

s.t.

(14)

D. Multidimensional Pseudospectral Method

The pseudospectral method lends itself to a natural extension
to consider the ensemble case, which we develop here. This is
most readily apparent for a single parameter variation, i.e.,

, however, is easily scaled to an arbitrary parameter
dimension. In this basic case, the ensemble extension of (10) is

The approximate derivative from (13) at the LGL nodes in the
respective and domains, and , is

where . In these equations we use a two-dimen-
sional interpolating grid at the and LGL nodes
in time and the parameter, respectively. For a general number of
parameters,

(15)

and the derivative is, correspondingly, with

(16)

The simplification from (15) to (16) illustrates why the pseu-
dospectral approximations are effective methods for ensemble
control, as they mimic the lack of information in the parameter
dimension. This aspect will also make the extension of the con-
vergence proof for ensemble systems straightforward, as will be
discussed in Section IV.

III. EXAMPLES

In this paper, we consider several examples based on the pro-
totypical quantum control system described by the Bloch equa-
tions [32]. The Bloch equations have been found to model a
range of quantum phenomena from protein spectroscopy in nu-
clear magnetic resonance (NMR) [1] and medical scans in mag-
netic resonance imaging (MRI) [33] to Rabbi oscillations in
quantum optics [34]. In the following discussion, we will con-
sider the specific application and terminology for NMR spec-
troscopy; however, the methods and results are easily transferred
to these other areas of interest. In NMR spectroscopy, when the
duration of the pulse design problem is small compared with
the relaxation times ( , the characteristic longitu-
dinal and transverse relaxation times, respectively), the evolu-
tion of spins can be well approximated as sequences of unitary
rotations driven by the static magnetic field and the applied elec-
tromagnetic controls. In practice, the effective fields generating
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Fig. 2. The “inversion” control pulse designed by the multidimensional pseudospectral method to make the state transfer���� �� �� � �� � �� ������ �� �� �
�� �� �� while compensating for � � ���� �� and � � ����� ����, i.e., � � � and � � ���. The final states � ����� �� shown have an average value less than
�����, achieving a highly uniform transfer across the ensemble.

these rotations show variation across the quantum sample due
to hardware imperfection and chemical shielding, which leads
us to consider a range of magnetic field variations. The corre-
sponding dimensionless Bloch equations in the rotating frame
(see Appendix A) are

(17)

where is
the Cartesian magnetization vector for the parameter values

, is the dispersion of natural fre-
quencies, , is the amplitude
attenuation factor, and is the generator of rotation
around the axis. A pulse that compensates for the dispersion
in frequency and is insensitive to the scaling of the applied con-
trols is called a broadband pulse robust to inhomogeneity. In
this section, we consider several examples based on this model,
including pulses robust not only to frequency dispersion and in-
homogeneity, but also robust to uncertainty in initial conditions
and time-varying frequencies. General implementation details
can be found in Appendix B.

A. Robust Pulse

Variation and dispersion in system dynamics pervade all
physical experiments. In quantum systems, these inhomo-
geneities are often large enough to cause significant reduction
in performance. The systematic framework we present here
provides a rigorous way to frame any general pulse design
problem for quantum control, as well as other areas of parame-
terized and uncertain systems.

A canonical problem in the control of quantum systems mod-
eled by the Bloch equations is to design pulses that will ac-
complish a state-to-state transfer of the system. Such pulses,
e.g., and pulses (accomplishing and rotations, re-
spectively), are the fundamental building blocks of the pulse se-
quences used in many quantum experiments. Here, consider the
inversion, or , pulse that rotates the net magnetization from
the equilibrium position to the axis, i.e.,

. In the ensemble case, this goal
corresponds to a uniform inversion of the spin vector across all

choices of frequency and inhomogeneity. Specifically we con-
sider the optimal ensemble control problem

s.t.

where is the maximum allowable amplitude and the cost func-
tional serves to equally minimize the z-component of the spin
vector (integrated across the ensemble) and the energy of the
designed pulse.

Fig. 2 displays a pulse that compensates for and
(10%) as well as the corresponding inversion pro-

file. In physical units for a normalizing amplitude of 20 kHz,
the maximum amplitude is kHz with bandwidth

kHz and duration s. Pulses developed
in this manner have been implemented experimentally in true
protein NMR experiments to yield significant improvement in
signal recovery [6]. Although designing individual pulses is of
great importance and benefit, there are a myriad of other vari-
ations and uncertainties within typical quantum experiments,
which calls for an approach that can address such new inhomo-
geneities and their corresponding challenges.

B. Uncertainty in Initial Conditions

In most experiments, individual pulses, such as the one in
Fig. 2, are combined into a longer pulse sequence, which per-
forms a more complicated manipulation of the system state with
intermediate steps and goals. Even in the case of highly opti-
mized individual pulses, as shown in the prior example, there is
an error between the desired and actual final states. Moreover,
pulses depend upon an exact (and usually uniform) initial con-
dition in order to achieve their expected levels of performance.
These effects combine to create a magnified accumulated error
at the termination of the pulse sequence. The variation of the
initial conditions of these pulses, therefore, causes significant
degradation in achievable performance.

A representative example of such a pulse sequence is to per-
form a three step pulse sequence, which rotates the magnetiza-
tion of the ensemble 1) from equilibrium to a point on the
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transverse plane (e.g., ); 2) to the opposite point on the trans-
verse plane (e.g., ); 3) back to the equilibrium position .
Such pulses generally include “phase locking” pulses before
and after the second pulse during which the magnetization dis-
sipates. This dissipation is the portion of the experiment that is
important to recover accurately and reflects a quantity to be mea-
sured, for example, a metabolic rate [35], [36]. If, in addition,
there is accumulated error due to uncertainty in the initial condi-
tions of the individual pulses, this leads directly to measurement
inaccuracy. Here, by removing the “phase locking” pulses, we
can abstract this pulse sequence to a unitary process and directly
address any losses due to error. The controllability of the Bloch
equations is shown constructing parameter-dependent (e.g., fre-
quency, RF inhomogeneity) rotations of the spin vectors [18].
This, therefore, ensures that the problem with variation in ini-
tial conditions can be solved provided that the initial conditions
can be parameterized by the frequency and RF-inhomogeneity.

Fig. 3 displays a three-stage optimized pulse designed by the
multidimensional pseudospectral method which is robust to fre-
quency dispersion and variation in the initial conditions of the
three stages. This pulse was run as three concurrent optimiza-
tions, with the final states of one pulse fed in as the initial con-
ditions of the next. This optimized pulse is compared with the
combination of three separately optimized pulses; these com-
bined pulses were designed with equal total duration. The ter-
minal profiles at each intermediate goal quickly show the evi-
dence of accumulated error in the case of the individually opti-
mized pulses (each individual pulse has an average performance
greater than 0.98). Most importantly, the uniformity of the in-
version is lost in the additive error, with dips in performance
down to 0.91.

C. Time-Varying Frequency

Until now, we have considered that the dispersion and uncer-
tainty of the system are stationary. However, addressing time-
varying fluctuations in parameters is also of particular theoret-
ical and practical importance. For example, in the formulation of
quantum control problems given in (2) we noted that the Hamil-
tonians can be time-varying, motivated by such phenomena as
random telegraph noise [37]. The first step to addressing sto-
chastic variations in such physical systems is to demonstrate
control of time-varying systems, such as given by the expec-
tation value of the corresponding random process.

Fig. 4 presents a series of optimizations designing pulses
providing a state transfer to , while compensating for a
time-varying frequency, . Various choices of cost
functional yield different results. The arbitrary control pulse
profile corresponding to the terminal cost
(Fig. 4, left) motivates studying optimal control methods
that provide the capacity for hybrid objectives resulting in
more physically meaningful controls, e.g., minimizing energy
(middle) and time (right).

IV. CONVERGENCE

By accepting and implementing a numerical method, we im-
plicitly assume that the transformations and discretization used
to prepare the problem for computational work does not fun-
damentally alter the nature of the problem. It is then critically

Fig. 3. Pulses are optimized to produce a desired ��� ������� � evolution
of the Bloch equations. The upper plot displays the concatenation of individu-
ally optimized ��� � and ����� pulses, which achieves the dashed terminal
profiles shown below, with respective average performances: 0.99, 0.98, 0.97
(0.91 minimum). The middle plot displays a three-part simultaneously-opti-
mized pulse robust to variation in the initial condition and achieves the solid ter-
minal profiles shown below, with respective average performances: 0.99, 0.99,
0.99 (0.97 minimum). The noticeable enhancement in performance and unifor-
mity is due to compensating for the inhomogeneity in the initial condition of the
individual pulses.

important to show that this assumption is justified. Here we do
so by both empirical and theoretical means. More specifically,
we show that as the number of discretizations in the pseudospec-
tral method (and samples in the multidimensional pseudospec-
tral method) increases the solution of the algebraic nonlinear
programming problem converges to the solution of the original
continuous-time optimal control problem. For this argument, we
consider a modified nonlinear programming problem statement.

1) Problem 2 (Algebraic Nonlinear Programming):

(18)

s.t. (19)

(20)

(21)

(22)

where is a positive constant; we define the discrete
norm , for , ,
with

where denotes the transpose and is the Gauss quadrature
weight from (12).

Remark 1: The dynamics in (19) have been relaxed from the
equality in (14) to ensure the feasibility of the discrete problem,
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Fig. 4. Control pulses (top) and state trajectories (bottom) corresponding to different objectives and designed to compensate for the time-varying frequency���� �
������. A single-system state transfer ���� � �� � �� ����� � � �� � �� is designed using the terminal cost ��� � � � �� � and running costs ���� � �
(left), ���� � �������� 	 ���� � (middle), ���� � ��� (right). The terminal time was free in all cases, bounded by � � �.

which is used in Proposition 1. It is trivial to show that in the
limit, as , these two conditions coincide.

We seek to address three questions related to solving the
continuous-time optimal control (Problem 1) by solving the
pseudospectral discretized constrained optimization (Problem
2). Suppose a feasible solution exists to Problem 1.
Under what conditions:

1) Feasibility: For a given order of approximation, , does
Problem 2 have a feasible solution, , which are the
interpolation coefficients given in (10) and (11)?

2) Convergence: As increases, does the sequence of
optimal solutions, , to Problem 2 have a cor-
responding sequence of interpolating polynomials which
converges to a feasible solution of Problem 1? Namely,

3) Consistency: As increases, does the convergent se-
quence of interpolating polynomials corresponding to the
optimal solutions of Problem 2 converge to an optimal
solution of Problem 1? Namely,

Remark 2: It is possible that Problem 1 has more than one
optimal solution, i.e., there is more than one solution with the
same optimal cost . Therefore, to show that the
sequence of discrete solutions converges to an optimal solution,
we can instead show that the cost of the discrete solution, ,
converges to the optimal cost .

Previous work has been done in the area of convergence of
the pseudospectral method and we aim to augment this liter-
ature with several key insights that make convergence results
applicable to a wider class of systems and relax the conditions
on which the current proofs are based. Rather complete analysis
has been done for the class of nonlinear systems which can be
feedback linearized, including convergence rates [38], [39]. We
show below that ensemble quantum systems of interest do not
fall within the class of feedback linearizable systems. Work has

also included general nonlinear systems, but with the assump-
tion that the solutions of the algebraic nonlinear programming
problem have a limit point (i.e., have a convergent subsequence)
[40]. In the language used above, this is very close to assuming
“Convergence,” which in this presentation we relax and prove
feasibility, convergence, and consistency directly. Finally, we
examine the convergence of the multidimensional pseudospec-
tral method as applied to ensemble optimal control problems. In
what follows, we consider first the convergence of the standard
pseudospectral method and then discuss the convergence of the
ensemble case.

We first observe that ensemble control systems of interest are
not feedback linearizable [41], which motivates a need for a
more general convergence proof. Consider the bilinear Bloch
equations in (17) without variation in RF inhomogeneity (i.e.,

). The ability to feedback linearize a general nonlinear
system is given by the Lie algebra generated by the drift and
control vector fields (the conditions on this algebra must hold
for each control term individually; here we consider the case for

). In particular, the terms , ,
, , and

where , and is any value in the interval .
It is clear that this Lie algebra, with increasing powers of the
parameter , is never closed. Therefore, the span of the appro-
priate Lie brackets is not involutive, which indicates that such a
system is not feedback linearizable.

A. Empirical Convergence

The orthogonal polynomials of the pseudospectral method
provide spectral convergence rates similar to Fourier series ap-
proximations for periodic functions, which can easily be seen
in practice. Fig. 5 shows the rapid convergence of the method
in both the discretization (time) and sampling (parameter) di-
mensions for a broadband pulse maximizing the terminal

value across the ensemble. As the order of discretization (N)
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Fig. 5. Characteristic rapid convergence of the multidimensional pseudospec-
tral method for a ��� pulse designed to perform the state transfer���� �� �� �
�� � �� ������ �� �� � �� � �� , with � � � and � � �. Average terminal
values of � ����� �� are shown for various choices of � and ��.

and/or sampling increase, the method yields an objective
that converges to the maximum value of

unity. The low order of approximation is a characteristic of the
orthogonal approximations at the heart of the numerical method.
Although such empirical figures are convincing, we now show
this convergence in a more rigorous fashion.

B. Theoretical Preliminaries

The results in this section will provide the foundation on
which we can analyze the feasibility, convergence, and con-
sistency of the pseudospectral approximation method for op-
timal control problems. We begin by presenting several key es-
tablished results in polynomial approximation theory and the
natural vector extensions. With these identities, we are able to
then prove feasibility and convergence. We define an optimal
solution to Problem 1 as any feasible solution that achieves the
optimal cost . We use this definition of an op-
timal solution within the subsequent preliminaries and the main
result.

Remark 2: Note that . Since exists and
, all the derivatives , exist and

are square integrable on the compact domain , .
Therefore, .

Lemma 1 (Interpolation Error Bounds [25], p. 289): If
, the following hold for an interpolation

approximation at the LGL nodes, with .
a) The interpolation error is bounded,

b) The error between the exact derivative and the derivative
of the interpolation is bounded

The same bound holds for the discrete norm

c) The error due to quadrature integration is bounded

where is the LGL node and is the corresponding
weight for LGL quadrature as defined in (12).

Remark 4: The convergence of interpolation approximations
are highly dependent on the choice of collocation nodes. Fig. 1
depicts the interpolation error possible using different types of
node choices.

Lemma 2: If , i.e., an -vector valued Sobolev
space, , .

1) The vector-valued extension of Lemma 1a is, by the tri-
angle inequality on the norm,

2) Similarly, 1b can be extended:

which again also holds for the discrete norm.
Proposition 1 (Feasibility): Given a solution of

Problem 1, then Problem 2 has a feasible solution, ,
which are the corresponding interpolation coefficients.

Proof: Given the feasible solution , let
be the polynomial interpolation of this solution at the LGL
nodes. Our aim is to show that the coefficients of this interpo-
lation satisfy (19)–(21) of Problem 2. Consider the constraints
imposed by the dynamics in (19). Because the discrete norm is
evaluated only at the interpolation points

where the last step is given by Lemma 2b. Therefore, the inter-
polation coefficients satisfy the dynamics of Problem 2 in
(19). We can easily show that the path constraints are also sat-
isfied because for all by (8). Since this
holds for all , it also holds for all LGL nodes ,
i.e.,

which gives (21). The endpoint constraints are trivially satisfied
by the definition of interpolation and the presence of interpo-
lation nodes at both endpoints. Therefore, is a feasible
solution to Problem 2.
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Proposition 2 (Convergence): Given the sequence of
solutions to Problem 2, , then the sequence of cor-
responding interpolation polynomials, , has a
convergent subsequence, such that

which is a feasible solution to Problem 1.
Proof: Given that is a feasible solution of Problem

2, it satisfies (19)–(21). Our goal is to show that the sequence
of polynomials, , 1) is bounded, 2) has a con-
vergent subsequence and 3) its limit is a feasible solution of
Problem 1, satisfying (6)–(8).

1) Explicitly writing out the discrete norm in (19) gives

Because is continuous, it satisfies

(23)

which means that the derivative of the interpolating
polynomial and the state dynamics match at the inter-
polation nodes. Moreover, as , the LGL nodes

are dense in , which shows that they match
along the entire domain.

2) The sequence is a sequence of polynomials
on the compact domain ; therefore, for each finite

, . In the limit, we showed above in
(23) that matches the state dynamics

, so that is bounded, because is
bounded over , and also satisfy for all

. With the boundedness of these interpolating poly-
nomials all supported in , Rellich’s Theorem
(cf., e.g., [42, p. 272]) gives that there is a subsequence

which converges in . The same is
true for the control interpolating polynomial. Therefore,
there exists at least one limit point of the function se-
quence which we denote .

3) Because has a convergent subsequence, we can
express (23) as

(24)

which states that satisfies the dynamics in
(6) at the interpolation nodes. Again, as , the
LGL nodes are dense in , which fur-
ther shows that satisfies the dynamics of
Problem 1 at all points on the interval . Similarly, one
can prove that this solution satisfies the path constraints
because the LGL nodes become dense in as
and at all LGL nodes.
Again, the endpoint constraints are met exactly because
the LGL grid has nodes at the endpoints.

Lemma 3: Given , where , ,
and the corresponding interpolation coefficients, , then the

error in the continuous and discrete cost functionals defined in
(5) and (18), respectively, due to interpolation is given by

Remark 5: Notice that and are not required to be
a feasible solutions to Problem 1 and 2, respectively. This result
characterizes the error due to interpolation.

Proof: From (6) and (19) since

Since with respect to both the state and control,
and , the composite function

. Let . Substi-
tuting these definitions and employing Lemma 1c, we obtain

Since , is finite and the result follows.

V. MAIN RESULT

Theorem 1 (Consistency): Suppose Problem 1 has an op-
timal solution . Given a sequence of optimal solutions to
Problem 2, , then the corresponding sequence of in-
terpolating polynomials, , has a limit point,

which is an optimal solution to the original op-
timal control problem.

Proof: We break the proof into four sections, employing
the results from the previous section.

1) By Proposition 1, since is a solution to Problem
1, then for each choice of , the corresponding inter-
polation coefficients, , are a feasible solution to
Problem 2. By the definition of optimality of

(25)

2) By Proposition 2, the limit point of the polynomial in-
terpolation of the discrete optimal solution to Problem
2, , is a fea-
sible solution of Problem 1. Therefore, we have, by the
definition of the optimality of and the continuity
of

(26)
3) Using Lemma 3, we can bound the error in the cost be-

tween the optimal solution of Problem 1, , and
the corresponding interpolating coefficients, , as

(27)

Similarly, we can bound the error in the cost between the
optimal solution of Problem 2, , and the polyno-
mial interpolation of this solution, , as

(28)
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Recall that Lemma 3 does not require to
be a feasible solution of Problem 1. From (27) and (28)

(29)

(30)

4) We are now ready to assemble the various pieces of this
proof. Combining (29) and (25) we have

Adding the result from (26)

(31)

Since the difference between the left and right sides, as given
by (30), decreases to zero as , the quantities
and converge to . In particular,

Thus, the optimal discrete cost of Problem 2 and
the continuous cost of the corresponding in-
terpolation polynomials converge to the optimal cost
of Problem 1. Moreover, is a feasible solu-
tion to Problem 1 and achieves the optimal cost. Therefore,

is an optimal solution to Problem 1.
Remark 6 (Ensemble Extension): The nature in which the en-

semble extension enters into the multidimensional pseudospec-
tral method makes it straightforward to extend this convergence
proof to the ensemble case. Section II-D showed the simplicity
of the derivative term in multidimensional sampling with (16).
Similarly, in the ensemble case, the constraints corresponding
to the dynamics (19) operate entirely in parallel for different
parameter values. The additional integration in the cost func-
tion over the parameter domain, as in (4) adds another layer of
quadrature approximation that can be shown to converge with
arguments similar to those presented above.

VI. CONCLUSION

In this work, we have presented a cohesive perspective and
methodology for optimal control of inhomogeneous ensembles,
as particularly motivated by compelling problems in quantum
control and extendable to both parameterized systems in, for
example, neuroscience [22] and uncertain systems throughout
science and engineering. Such systems are mathematically char-
acterized by considering a parameterized family of differential

equations indexed by a parameter vector that shows variation.
Applying this rigorous framework prompts us to solve the corre-
sponding optimal control problems with computational methods
of particular form. The notion of polynomial approximation en-
tering into the controllability analysis of the Bloch equations
indicates that a modified pseudospectral method is a prime can-
didate. The method has natural extensions which we develop to
model ensemble variation. This direct collocation method trans-
forms the continuous-time optimal control problem into an al-
gebraic nonlinear programming problem, which we show to be
effective in a variety of applications. We supplied additional and
more general arguments for the convergence of this method, in
particular relaxing several assumptions and discussing the con-
vergence characteristic of the multidimensional pseudospectral
method for optimal ensemble control.

APPENDIX A
DIMENSIONLESS BLOCH EQUATIONS

The Bloch equations without relaxation, ,
utilizes the classical description of interacting electromagnetic
forces, where is the spin magnetization vector, is the
gyromagnetic ratio, the effective externally applied field is

, , and
are the amplitudes of the applied fields in the transverse

plane and direction, respectively, and is the phase
angle [1]. Conventionally, the fields are given as frequencies

and measured in units of Hertz. Using
the generators of rotation

the Bloch equations are be given by

(32)

If we consider variation in the applied electromagnetic fields
and , we can express (32) in matrix form as in (33) at

the bottom of the page, where and
. For calculation and computation, it is

useful to transform the Bloch equations into the so-called ro-
tating frame and normalize the system by a nominal pulse am-
plitude to yield a dimensionless equation. Solutions based
on the dimensionless equation can then be scaled for a spe-
cific choice of nominal amplitude. Consider a transformation

. In addition, we scale time with .

(33)
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It is straightforward to show that the new state equation is given
by

where , , , and

(all dimensionless). Note the factor in the time scaling is in-
troduced to convert from units of Hertz to radians/second. De-
signing the time-varying controls and is equivalent to
the original design of amplitude and phase .

APPENDIX B
PRACTICAL IMPLEMENTATION

The purpose of the pseudospectral framework discussed in
this paper is to discretize a continuous optimal ensemble control
problem into a discrete nonlinear programming problem. The
methods discussed in Sections II-C and II-D and applications in
Section III leave a significant amount of flexibility in terms of
how to implement this approximation methodology.

The approximation techniques involved in the pseudospectral
method are straightforward and can be accomplished with any
scientific-capable programming language or interface. Our pro-
totyping in this area began in MATLAB; in fact, there are a few
MATLAB based implementations of the entire pseudospectral
method, for which only system-specific details must be written
by the user. In favor of flexibility, this work was done entirely
with custom software.

Ultimately, the Legendre pseudospectral method evidences
a straightforward pattern, which can be directly written into
a nonlinear programming problem. AMPL is a very general
modeling language to pose optimization problems. Our imple-
mentation specifically employs AMPL with a commercial soft-
ware KNITRO to solve the nonlinear programming problems,
wrapped by several python scripts that generate, for example,
the matrix and LGL nodes of appropriate dimension. More-
over, the condensed notation of the AMPL language provides a
succinct way to state optimal ensemble control problems.

APPENDIX C
RELLICH’S THEOREM

Theorem 2 (Rellich’s Theorem [42], p. 272): Suppose
is a sequence in such that

1) ;
2) the ’s are all supported in a fixed compact set .

Then there is a subsequence which converges in for
all .
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