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Estimating the minimum control 
count of random network models
Derek Ruths1 & Justin Ruths2

The study of controllability of complex networks has introduced the minimum number of controls 
required for full controllability as a new network measure of interest. This network measure, like many 
others, is non-trivial to compute. As a result, establishing the significance of minimum control counts 
(MCCs) in real networks using random network null models is expensive. Here we derive analytic 
estimates for the expected MCCs of networks drawn from three commonly-used random network 
models. Our estimates show good agreement with exact control counts. Furthermore, the analytic 
expressions we derive offer insights into the structures within each random network model that induce 
the need for controls.

Recent advances in applying techniques from control theory to network science have provided new conceptual 
perspectives and quantitative approaches on complex networks. In particular, the question of controllability — 
the problem of driving the state of a system over time to a desired endpoint — has yielded new ways of thinking 
about the relationship between network structure and function1,2. When the dynamical system evolving on a 
complex network is linear, structural controllability provides, among other things, a way of using only the net-
work structure to determine the minimum number of independent inputs must be attached to a network in order 
to control the entire system, which here we call the minimum control count or MCC1,3,4.

Because these and other control-theoretic constructs relate to the propagation of influence through a sys-
tem, it is not surprising that the measure has been shown to take on a range of values depending on the system 
of interest1. Recent work has shown that a particular decomposition of the minimum control count, called the 
control profile, separates real-world networks into clearly defined classes that have conceptual and functional sig-
nificance2. This demonstrates that the minimum control count is a statistic that provides functional insight that 
can be used to compare networks, regardless of whether the controls are, themselves, complete or feasible. It is 
worth noting that this line of research of network science using structural control analysis results is distinct from 
parallel (and complementary) efforts to determine the feasibility of the input signals required to drive the network 
between desired states, which is a question of control synthesis and implementation5–7.

As a result, the minimum control count has joined a pantheon of existing network measures, including vari-
ants of centrality, clustering, motifs, network diameter, and degree distribution. All of these have been used to bet-
ter understand the structure and behavior of a wide array of complex systems (e.g.,8,9). Among such studies, it is 
standard to employ null network models as a way of establishing the significance of a particular measure of inter-
est (e.g.,10,11). These null models have typically been implemented as ensembles of networks generated under a 
specific random network model. As a result, establishing the expected distributions of network properties of ran-
dom network models has been and continues to be a theoretical enterprise with important practical implications.

At their most basic level, random network models are described by well-defined generative processes. These 
processes make it possible, in some cases, to derive exact or approximate analytic expressions for particular net-
work features, such as diameter, degree distribution, and clustering12,13. Because analytic expressions are compu-
tationally trivial, such analytic forms make the analysis of otherwise expensive-to-compute network properties 
tractable (e.g., motif identification and diameter).

The minimum control count can be computed in O(V2logV) time by finding a maximum matching of the 
network14. Thus, the algorithm is, technically, tractable. However, for networks of any appreciable size the com-
putation is expensive.

In this paper, we provide an attractive and theoretically informative alternative to brute-force computing 
the MCC for well-known random network models. Here we derive tight analytic estimates for the MCC in 
three of the most commonly-used random network models: Erdos-Renyi, Barabasi-Albert, and local attach-
ment15–17. Our estimates show extremely good agreement with empirical results, indicating that they can be 
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used as a computationally efficient and reliable way of determining the MCC of these random network models. 
Furthermore, our derivations explicitly show the component-wise composition of the minimum control count in 
each random network model.

Controllability
A system is controllable if it is possible to drive the system from any initial state to any desired final state in finite 
time through the application of a time-varying input or set of inputs. Controllability is an important property 
of systems of interest because it indicates the feasibility and complexity of arbitrarily influencing the state of the 
systems.

Due to their sheer size and complexity, networks offer a distinct and novel challenge to the task of determining 
control-related properties. Many of the existing methods in the control theory literature do not scale efficiently 
to large networks. Moreover, networks present completely new questions to be addressed. The first of these seeks 
to determine which (and how many) nodes in a network must receive direct external control in order to render 
the system controllable.

Prior work in the control of real-world, directed networks has focused on answering this question1,18. This 
body of work considers a linear dynamics model for each node in the network such that the time evolution of the 
system is given by

( ) = ( ) + ( ), ( )
d
dt

x t Ax t Bu t 1

where ( ) ∈x t N  with each component xi(t) representing the state of node i at time t, ∈ ×A N N  describes the 
interconnection of the nodes and is the transpose of the adjacency matrix of the network, ( ) ∈u t N c is the col-
lection of external driving inputs to the system at time t, and ∈ ×B N N c describes the assignment of controls 
uj(t), j =  1,…, Nc, to nodes (i.e., where the controls are applyed to the network). These systems are studied in the 
generic sense, conceptually equivalent to considering a network without regard for the weights of the edges. 
Assessing structural, or generic, controllability is significantly more computationally tractable and it also focuses 
effort on properties most relevant to networks - their structure. Specifically, in the absence of a predefined B, the 
maximum matching algorithm can be used to identify a B such that the pair [A B] is controllable3,19.

Liu et al. have demonstrated several fundamental properties of controllability of networks which revolve 
around the fact that the number of controls required to guarantee controllability is relatively invariant under a 
degree-preserving shuffle (i.e., the network connections are randomized with the constraint that the degree distri-
bution must remain the same)1,20. Posfai et al. identified the role that in-out degree correlations play in explaining 
the observed error that exists in the correlation between degree distribution and number of controls required21. 
Jia et al. introduced a classification that labels nodes according to whether they must, can, or are never directly 
connected to the minimal set of controls required to fully control the network18.

The current authors created a framework to cluster and classify networks based on the functional origin of 
their control structures2. This framework facilitates not only a simpler estimation method for the number of 
controls needed, but also provides insight as to the reasons behind why a specific node must be controlled. Our 
prior work identifies that the number of nodes that require direct control include source nodes (nodes with only 
outgoing edges), excess sink nodes (nodes with only incoming edges, but only if there are more sink nodes than 
source nodes), and internal dilation points (points that create the need for an additional control, but not related 
to source or sink nodes). For the purposes of this paper this is most easily expressed as

= ( , ) + , ( )N N N Nmax 2c s t i

where Nc is the minimal control count, Ns is the number of source nodes, Nt is the number of sink nodes, and Ni 
is the number of internal dilations. An isolated node (a node without any edges) is considered as both a source 
and a sink node. This prior work also found that the generative algorithms which construct the most popular 
synthetic networks create networks which have systemically fewer internal dilations when compared to real world 
networks. It was shown that by counting sources and sinks alone, Nc could be predicted nearly as well as the 
degree-preserving shuffle method reported by Liu et al.1.

In the remainder of this paper, we calculate the expected number of source, sink, and isolated nodes in the 
most popular directed synthetic network models: Erdos-Renyi (ER), Barabasi-Albert (BA), and local-attachment 
(LA). Combining these counts with (2) we achieve tight estimates for the number of controls required by these 
various network models using very little computational effort.

Results
Erdos-Renyi.  The Erdos-Renyi generative model describes a class of networks produced by iteratively adding 
edges to an initially empty graph consisting of N nodes16. Each of the ( − )N N 1

2
 possible edges in the network is 

introduced with probability p ∈  [0, 1].
We compute the probabilities of a node in a directed ER network being a source, a sink, and an isolate. All 

three cases influence whether a control will be required. Similar to the undirected case described above, a directed 
ER network is specified using the number of nodes, N, and the probability of a link existing, p (note the number 
of possible edges in the directed network is N(N −  1)).

Given such a network, the probability that a node is a source is the probability that it has no inbound edges, 
(1 −  p)N−1, and at least one edge outbound from it, (1 −  (1 −  p)N−1). This yields the expression
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( , ) = ( − ) ( − ( − ) ) ( )− −P N p p p1 1 1 3s
N N1 1

Thus, the expected number of sources in the ER network is

( , ) = ( − ) ( − ( − ) ). ( )− −N N p N p p1 1 1 4s
N N1 1

The probability of a node being a sink is the probability that no edge is outbound to it and that it has at least 
one edge inbound to it. Notice that, by the symmetry of the Erdos-Renyi generative process, these probabilities 
are the same as for source nodes. Thus, we have that Nt(N, p) =  Ns(N, p).

Finally, the probability that a node is an isolate is the probability that it received no inbound or outbound 
links. So the number of isolates is

( , ) = ( − ) ( − ) = ( − ) ( )− − ( − )N N p N p p N p1 1 1 5N N N
iso

1 1 2 1

Since an isolate is simultaneously a source and sink node, Niso is added to both Ns and Nt. The estimated expected 
number of controls required for an ER network generated with parameters (N, p) is given by (2) assuming Ni ≈  
0, i.e.,

( , ) ≈ ( , ) + = ( − ) . ( )−N N p N N N N pmax 1 6c s t
N

iso
1

The agreement of our estimates for fractions of source, sink, and isolated nodes as well as the predicted frac-
tion of minimum controls required for the network can be seen in Fig. 1(a).

In the large N limit, we can simplify nc =  Nc/N further, using ( )− =→∞ elim 1x x

x1  and the average degree, 
p =  k/(N −  1), to yield

( , ) = . ( )→∞

−n N p elim 7N
c

k

Because we explicitly omit Ni >  0 from this estimate, it is a lower bound for the expected fraction of controls 
in an ER network. This is corroborated by a similar observation that in the large k limit nc ~ e−k/2, based on calcu-
lations from the cavity method1. Many networks of importance are sparse (negating a large k assumption), so our 
method provides a useful analytic lower bound on the fraction of nodes which must be controlled in an ER net-
work. Moreover, the gap between these results begins to shed light on the expected number of internal dilations 
(Ni) present in ER networks.

Figure 1.  Estimated expected and empirical fractions of source, sink, and isolated nodes as well as 
controlled nodes (nc = Nc/N) in (a) Erdos-Renyi and (b) Barabasi-Albert type networks are estimated by 
closed form expressions; N =  100. Error bars represent an empirical survey over 1000 random instances of 
each (N, p) or (N, m) pair.
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Barabasi-Albert.  The Barabasi-Albert network model is among the most widely known methods for gener-
ating networks with a scale-free degree distribution. Under this method, a network is constructed by iteratively 
adding nodes which, at the time of introduction, select m outbound neighbors. An existing node’s probability of 
being selected as a neighbor of node i is proportional to the number of edges incident to it, typically expressed as 
( )k i

mi2
x , where kx(i) is the degree of node x at time i (the time step coinciding with the index of the node being 

added). This process is continued until a specific network size (i.e., number of nodes) is reached15.
In this section, we investigate a standard directed version of the BA algorithm. To bootstrap the process, m 

unlinked nodes are constructed and then one node is introduced with outbound links to the first m nodes. Since 
all nodes added subsequently have m outbound neighbors, no new sinks or isolates will be created. Thus, in a BA 
network, there are m sinks and no isolated nodes. Worth noting is that the preferential factor, ( )k i

mi2
x , remains 

unchanged - in that the total degree of a node determines the probability with which it receives an edge.
To compute the number of sources, we must determine the probability that a node x receives no new incident 

edges after joining the network. Observe that such a node will have kx(j) =  m for all time steps j, since it creates m 
outbound edges when first created. Thus, the probability of a source node not receiving an edge in time step j is





−

( − )





=




−
( − )




 ( )

m
m j m j m

1
2

1 1
2 8

m m

where the term (j −  m) accounts for the fact that the first m nodes introduced into the network created no edges 
(hence making them sinks).

The probability that node i is still a source at time N is the product

∏( , , ) =




−
( − )





.

( )= +
P i N m

j m
1 1

2 9
s

j i

N m

1

By summing Ps across all of the nodes after the bootstrapping phase the expected number of source nodes is 
given by

∑ ∏( , ) =




−
( − )





.

( )= + = +
N N m

j m
1 1

2 10
s

i m

N

j i

N m

1 1

Notice that when i =  N the product indexes from j =  N +  1 to j =  N. This notation is well-defined and called 
the empty product, taking the value of 1. This is consistent since the Nth node is a source node with probability 1, 
since it is the last node added and only has edges leaving it. Next, we adjust the indices of the summation to yield 
a simpler expression,

∑ ∏( , ) =



 −





,

( )=

−

= +

−
N N m

j
1 1

2 11
s

i

N m

j i

N m m

1 1

and rearrange the interior,

∑ ∏( , ) =






− 




.

( )=

−

= +

−
N N m

j

j 12
s

i

N m

j i

N m
m

1 1

1
2

The interior product is a truncated ratio of factorials. Using the generalized factorial, Gamma function,

( )
( )∑( , ) =











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
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or more simply,

( )
( )∑( , ) =






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Γ( − + )
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Several results exist on bounds of Gamma ratios separated by 1/222. While tighter bounds exist, the following 
result is a useful bound, which has a compact expression but still performs well23,

( ) π
+ <

Γ( + )

Γ +
≤ + .

( )
z

z

z
z1

4
1 1

15
1
2

Making use of the previous result gives
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( )
π− + /
≤
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for the outer ratio and

( ) π
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Γ +
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( )
i

i

i
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1 1

17
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for the inner ratio. Therefore, the estimated number of source nodes in a Barabasi-Albert network is approxi-
mated by the bounds, < <− +N N Ns s s , where these bounds are given by

∑ π
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
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As the size of the network gets large, we can approximate the summation with an integral. Because Ns is a decreas-
ing function, the integral will necessarily underestimate the sum. If we, however, shift the limits of integration to 
the right, from [1, N −  m] to [2, N −  m +  1], the integral will consistently overestimate the sum of a decreasing 
function. Therefore, < <−− ++N N Ns s s , where these bounds are given by

π
α

π π=


 − +



 ( ( − + ) + ) − ( + ) ,
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α α
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where we have introduced α =  (m +  2)/2 to simplify these expressions. The estimated number of controls 
required for a BA network is then the maximum between any of these estimations and the number of sinks in 
the network, m. For large average degrees relative to the size of the network, sinks eventually begin to dominate 
sources as can be seen in Fig. 1(b).

It is worth noting that the number of sinks present in the network is entirely a product of the seed net-
work used. Crucially, were a fully connected clique of m (or even 2) nodes used, there would be no sinks at 
all. Regardless, since the number of sinks (or sources or isolates) contributed by the seed network is fixed and, 
generally, much smaller than the size of the final network, the contribution of the seed network to controllability 
properties is both trivial and often insignificant.

Local Attachment.  Local attachment is another mechanism which creates networks with scale-free degree 
distributions. Similar to the BA method, nodes are introduced incrementally and select an outbound neighbor-
hood of fixed size, m. Unlike the BA method, node degree does not explicitly influence the probability of inclusion 
in a new node’s neighborhood. Instead, neighbors are selected in a two-stage process. First, during the random 
attachment phase, mr nodes are selected with uniform probability to be neighbors. Then, during the local attach-
ment phase, the remaining mn =  m −  mr neighbors are selected (again with uniform probability) from among the 
outbound neighbors of the mr nodes chosen during the first phase. The network is bootstrapped by seeding it with 
a clique of m +  1 nodes (thus, each node in the clique has m outbound neighbors)17.

By virtue of the starting condition, there are no sinks in a local attachment network. Furthermore, there are no 
isolates since every node is born with m outbound edges. From a controllability perspective, the question, then, 
is how many sources should be expected in a network of N nodes who have formed mr random neighbors and mn 
network neighbors such that m =  mr +  mn?

For a node to cease being a source, it must receive at least one edge. Crucially, the first edge that a node receives 
must be formed through random attachment, since the node at that time would have no inbound neighbors that 
would mediate a neighbor-based interaction. Thus, the probability that node i is a source is the probability that it 
never received a random edge from nodes i +  1 ... N

∏( , , , ) =



−
+



...


 −



 =




 −





.

( )= +
P i N m m m

i
m
N

m
j

1
1

1 1
22

s r n
r r

j i

N
r

1

This can be rewritten using the generalized Gamma function, as

( , , , ) =
Γ( + )Γ( + − )
Γ( + )Γ( + − )

.
( )

P i N m m
i N m
N i m

1 1
1 1 23s r n

r

r

Note that i >  m +  1. The expected number of sources (and an estimate of the minimal control count), then, is
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∑( , , ) =
Γ( + − )
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N
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We can make use of the following result from fractional calculus to simplify this expression24

∑
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n1 25j

n

0

1

In order to achieve this form, we reindex (24) with j =  i −  mr.
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r

recalling that m −  mr =  mn. The summation can be written as a difference of summations,
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which applying (25) reduces to
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Replacing the summation in (24) with this last result, we find that the expected number of source nodes in a local 
attachment network is given by

( , , ) =
+ −

+
.

( )

Γ( + − )Γ( + )

Γ( + )Γ( + )N N m m
N

m

1

1 29c r n

N m m
N m

r

1 3
1 2

r

n

Much as with the Barabasi-Albert model, the choice of seed network can introduce some fixed number of (or 
exclude the option for) source, sink, or isolated nodes. For instance, in the seed network used for our implemen-
tation of LA, no sources, sinks, or isolated nodes are created. A seed more similar to that used by the BA model 
would produce additional sinks. However, while seeds can change the absolute number of structures relevant to 
control, for large networks the number of seed-contributed structures is insignificant compared to those gener-
ated by the generative process itself. Thus, for any sufficiently large network, the contribution of the seed network 
to the minimal control count is inconsequential.

As shown in Fig. 2, our analytic expression shows excellent agreement with the observed number of sources 
in local attachment networks, generated across a range of parameter values. Shown are network ensembles gen-
erated for two choices of out-degree (m) with the involvement of the local attachment mechanism ranging from 
dominant (mr =  0.2) to small (mr =  0.8). Parameter values do not appear to impact the overall fit.

This parameter independence also extends to using the analytic expressions to estimate the minimal control 
count. The second panel of Fig. 2 shows that, while some discrepancy exists (a difference of < 5%), the analytic 
results follow the actual MCC closely and, moreover, statistically bounds the true MCC from below.

Notice that changing mr/m alters the proportion of neighbors chosen with uniform probability. This has the 
effect of increasing or decreasing the contribution of local attachment involved in the formation of the networks, 
specifically tuning the power-law parameters γ =  mr/mn +  217. The second panel in Fig. 2 reveals that, as the con-
tribution of local attachment decreases (i.e., mr/m →  1), the number of controls falls. This inverse relationship 
between the number of controls and mr/m (the proportion of connections made by random attachment) is related 
to the finding reported by Liu et al., that as γ →  2, → 1N

N
c ; in the case we consider here, we see that as mr/m 

decreases (i.e., γ approaches 2) N
N

c  markedly increases (eventually approaching 1). Our approximation explains 
why this is the case: it clearly follows from Equation 22 that a smaller mr makes (1 −  mr/j) larger, resulting in more 
controls due to source nodes.

Discussion
Since studies of real-world networks often involve comparisons with null models in order to establish the sta-
tistical significance of key features, the foremost contribution of the present work is a set of analytic expressions 
which provide a good estimate of the minimal control count of networks belonging to three classes of network 
null models commonly used in literature.

The expressions derived provide the expected number of controls induced by all structures (sources, sinks, 
and isolates) except for internal dilations. As a result, the expressions provide a kind of statistical lower bound 
for the number of controls required by a network — in the sense that these synthetic networks have some small 
number of internal dilations as well.

To quantify this, we ran empirical tests over a wide range of parameter values with the number of nodes 
ranging from N =  100 to N =  50000 and average degree ranging from k =  2 to k =  58 for all three network types. 
For LA networks, four values of mr/m were chosen at each N and k. For each set of parameter values, ten net-
works were created and evaluated to yield an average Nc value. The approximations provided by our expressions 
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reproduce the value of Nc with small error. When the error (Nc −  max(Ns, N −  t)) is calculated relative to the 
number of nodes in the network (quantifying the fraction of nodes correctly identified as controls), we obtain 
average error rates of 0.5% (ER), 2.5% (BA), and 1.9% (LA). When the error is calculated relative to the number 
of actual controls (quantifying the fraction of controls correctly identified), we obtain average error rates of 4.3% 
(ER), 18.1% (BA), and 4.3% (LA). Thus, as results from simulations show, the number of internal dilations is sys-
tematically quite small compared to the number of sources and sinks.

Often it is desirable to be able to tune particular features in order to make null network models either similar 
to or different from real-world networks along those particular dimensions. Future studies will seek to set the 
MCC of null network models.

Our analytic expressions deliver unfortunate news where this “tuning” is concerned: the parameters used 
to specify each network model cannot be used to modify the number of sources, sinks, or isolates in generated 
networks. As a result, the present network models quite definitively lack the ability to tune or set the MCC to a 
desired value.

While in this paper we have only shown this limitation for the three models considered, we anticipate that this 
is a limitation of most, if not all, existing random network models. This suggests an important direction for future 
work in this area: the development of derivative network models in which the minimum control count, and even 
the components of that count, can be explicitly set using model parameters.

In addition to a general lack of ability to tune controllable properties, all three models shared in common the 
fact that the greatest deviation from the analytic estimates derived occurred at intermediate values of parameters. 
In all three cases, the intermediate values correspond to networks with a moderate degree of connectivity. This 
phenomena offers some insight into pre-conditions for internal dilations — the only control-inducing structure 
that is not accounted for by our expressions. The higher error rate indicates that a higher proportion of dilations 
occur at intermediate levels of connectivity.

In very well-connected networks, the probability of directed paths that traverse large sets of nodes are high. 
Thus, any possible dilation structures are rendered irrelevant by paths of influence that span large sections of the 
network. In the case of sparse networks, we conjecture that at least two related phenomena depress the number of 
internal dilations. First, a paucity of edges increases the likelihood that any given node is either a source or a sink 
— in which case they would belong to structures estimated by our expressions. Second, internal dilations involve 
relatively complicated structures which will occur more rarely when few edges are available.

Overall, we consider this analytic approach to understanding control structures of random null models to be 
a pursuit which will yield practical tools for network analysis as well as deeper insights into the structural basis 
for control in complex systems.
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