
I use this mini-project to get a sense for the way you look at a problem and also how you code. While not
all research projects in my group require lots of coding, many do. Do your best to complete the three subparts
below. You may use any books or online resource, but please do this on your own. Submit your code (you can use
any programming language) as well as a short PDF document summarizing your solution (including plots) to the
questions below.

Gradient Descent Primer

Suppose that we would like to find a local minimum of a function f(x),x ∈ Rn, and f : Rn → R. An iterative
algorithm starts at an initial point, say x0, and generates a series of points (iterates) x1, x2, . . . , xn, where the last
point xn is either a (local) minimizer or very close to one. The points are usually generated as:

xk+1 = xk + αkdk, k = 0, 1, 2, . . . (1)

where αk ∈ R is the step length and dk ∈ Rn is the step direction in the kth iteration. The step length, αk, can
be chosen as a fixed value or one that minimizes the function for that iteration. If the step directions are chosen as
dk = −∇f(xk), then the algorithm is referred to as the steepest descent method.

1. Implementing the steepest descent algorithm to a differentiable function is straightforward and requires the
following initial steps:

(a) Determine the function to be minimized.

(b) Determine the gradient of the function.

2. The steepest descent algorithm can then be implemented in the following way:

(a) Choose an initial guess, x0 and set your iteration counter k = 0.

(b) Perform the following loop until a convergence criterion (stopping criterion) is met:

i. Calculate the gradient at the current point.

ii. Determine the step length in the direction of the gradient.

iii. Find the next point xk+1 by using Equation (1).

iv. Increment the iteration counter k by one.

3. When the convergence criterion has been satisfied, the final point xn should be such that f(xn) is a local
minimum of your function or close to one.

The steepest descent algorithm is a useful tool, however, it may be very slow for some problems. Although more
sophisticated versions of this algorithm are used in practice to overcome these issues, the major principles of the
method remain similar.

Activity 1: Gradient Descent

Let’s take a look at the problem of predicting your total course grade in a class based on how well you did on the
midterm exam. We can start by looking at the data from 6 of last year’s students:

Student A B C D E F
Midterm Grade 92 55 100 88 61 75
Course Grade 95 70 95 85 75 80

Assume that there is a linear relation between the dependent variable (the Course Grade) and the independent
variable (the Midterm Grade). Write a gradient descent program to find the best fitting linear relation for the data.
Similar to least squares, we would like to minimize the error between the actual course grade values and the ones
predicted using the linear relation. Have your program display a plot of the best fit line along with the raw data.
Put the equation of the best fit line and your plot into your PDF summary.

1



Figure 1: (Left) A possible path of a variable as it follows the gradient each iteration. (Right) Two parameters of
significantly different magnitudes create a situation in which the gradient descent method uses significantly more
iteration steps. The contours of the cost function are shown along with the steps of the gradient method.

Activity 2: Feature Scaling

Although the gradient method is a simple algorithm, you most likely already found a few aspects of the process
that were a bit tricky. In particular, you probably noticed that finding a step size that worked well took some trial
and error. Part of this is due to the fact that the step size is multiplied by the derivative in order to update the
parameter value. Therefore, the value of the function itself (and the derivative) influences how big or small the step
size should be. The gradient method performs poorly when one parameter is significantly larger than another, such
as in the last activity where the y-intercept is much larger in value than the slope. Figure 1b shows how a function
with differently scaled parameters exhibits stretched level curves. Imagine trying to use a gradient method with a
relatively large step size - you can see it would diverge quite quickly.

One way to avoid this difficulty is to rescale the problem so all of the parameters are on roughly similar scale.
This makes the contours in Figure 1b more circular than elliptical. We accomplish this by rescaling the data using
x̃ = x−x̄

σx
and ỹ = y−ȳ

σy
, where x̄ is the mean of the x values and σx is the standard deviation of the x values (note

that this is not the only way to normalize the parameter values). Running the gradient method on a normalized
problem is significantly easier and more robust to your choice in step size.

Update your code from Part 1, this time normalizing the midterm and course grades first. Keep in mind that the
slope and y-intercept will change after you normalize your data, so you will have to use a reverse transformation to
“unnormalize” these slope and y-intercept values. Again show the plot of the “unnormalized” best fit line and the
raw date in your PDF summary, as well as the equation of the best fit line. For the same step size and convergence
criteria does the normalized problem converge in fewer iterations?

Activity 3: Extended Gradient Descent

In many cases, the quantity we measure is dependent on more than a single independent variable. Let’s look at
another problem in which we analyze the effect of weight (kg), age (years), and stress (stress index, 0-100) on blood
pressure (BP).

Person 1 2 3 4 5 6 7 8 9 10 11 12 13
Weight 69 83 77 75 71 73 67 71 77 69 74 86 84

Age 50 20 20 30 30 50 60 50 40 55 40 40 20
Stress 55 47 33 65 47 58 46 68 70 42 33 55 48

BP 120 141 124 126 117 129 123 125 132 123 132 155 147

Assume a linear model for predicting blood pressure by weight, age, and stress. Make a copy of your gradient
descent program and update it for this larger model. Solving this problem, due to the extra dimensions (of different
magnitues), is significantly easier if you first normalize the data!

Find the coefficients for the linear model and report the equation of the line in your summary. Create a vector
with the predicted blood pressure values based on your model and plot the actual (y-axis) versus the predicted
(x-axis) values. Also plot the line y = x. Put this plot in your summary as well.

2


