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Many key aspects of control of quantum systems involve manipu-
lating a large quantum ensemble exhibiting variation in the value
of parameters characterizing the system dynamics. Developing
electromagnetic pulses to produce a desired evolution in the pre-
sence of such variation is a fundamental and challenging problem
in this research area. We present such robust pulse designs as an
optimal control problem of a continuum of bilinear systems with a
common control function. We map this control problem of infinite
dimension to a problem of polynomial approximation employing
tools from geometric control theory. We then adopt this new
notion and develop a unified computational method for optimal
pulse design using ideas from pseudospectral approximations, by
which a continuous-time optimal control problem of pulse design
can be discretized to a constrained optimization problem with
spectral accuracy. Furthermore, this is a highly flexible and efficient
numerical method that requires low order of discretization and
yields inherently smooth solutions. We demonstrate this method
by designing effective broadband =/2 and = pulses with reduced
rf energy and pulse duration, which show significant sensitivity
enhancement at the edge of the spectrum over conventional pulses
in 1D and 2D NMR spectroscopy experiments.

pseudospectral methods | ensemble control | Lie algebra |
broadband excitation

Compelling applications for quantum control have received
particular attention and have motivated seminal studies in
wide-ranging areas from coherent spectroscopy and MRI to
quantum optics. Designing and implementing time-varying exci-
tations (1f pulses) to manipulate complex dynamics of a large
quantum ensemble on the order of Avogadro’s number is a
long-standing problem and an indispensable step that enables
every application of quantum control (1). For example, magnetic
resonance applications often suffer from imperfections such as
inhomogeneity in the static magnetic field (B, inhomogeneity)
and in the applied rf field (rf inhomogeneity). In addition, there
is dispersion in the Larmor frequency of spins due to chemical
shifts. A good pulse design strategy must be robust to these
effects, and such variations need to be considered in the modeling
and pulse design stages in order to match theoretical predic-
tions to experimental outcomes. As difficult experiments with
more demanding performance specifications have emerged, the
complexity of finding optimal pulse sequences has drastically
increased. For example, as high-field NMR spectrometers are
increasingly more accessible and required, broadband excitation
pulses are needed to cover a wide '3C chemical-shift range
(e.g., up to 40 kHz). In addition, to design excitation and inver-
sion pulses that are practical for a typical NMR spectrometer,
methods must accommodate realistic maximum rf power and
pulse duration while accomplishing the desired spin evolution.
In the majority of cases, the length of an rf pulse is constrained
by the fixed delays that dictate a certain coherence transfer. Such
limitations and imperfections cause a substantial increase in the
complexity of the pulse design problem.

From early work using physical intuition (2, 3) to modern
methods like composite pulses (4, 5), an enormous body of pulse
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sequence design techniques has been proposed over 50y (6, 7),
and the process of innovation is ongoing. Highly customized
methods, however, have limited scope, such as the Shinnar-Le
Roux algorithm, which is robust to Larmor dispersion but not
able to compensate for 1f inhomogeneity (8). For relatively simple
cases, theoretical methods, such as average Hamiltonian theory,
provide intuitive guidelines for constructing pulse sequences
(9). Heuristic numerical optimization methods have been used
extensively for the design of single and multiple pulses in a pulse
sequence (10). However, these approaches have a number of
shortcomings, such as slow convergence rates and being easily
trapped into local optima. In recent years, there have been
attempts to look at pulse design problems from a control theory
perspective (11-14). In particular, state-of-the-art methods such
as gradient ascent and Krotov algorithms are based on principles
of optimal control theory (15, 16) and have been used successfully
to design broadband and relaxation-optimized pulses that maxi-
mize the performance of quantum systems in the presence of
relaxation (17-19). These algorithms, although effective, rely on
intensive computations, as for system propagators and gradients,
as well as a large number of discretizations in the time domain
over which to evolve the system.

To overcome these defects, in this article, we provide a system-
atic framework for optimal pulse design in quantum control. We
first present a general mathematical model for pulse design as
an optimal control problem of a continuum of bilinear systems.
Employing Lie algebra tools from our prior theoretical work (20),
we show the control problem of pulse design can be mapped to a
problem of polynomial approximation. This notion guides us to
develop a unified computational method for optimal pulse design
based on multidimensional pseudospectral (PS) approximations,
by which a continuous-time optimal control problem of pulse
design can be discretized to a constrained optimization problem
using interpolating polynomials. The presented multidimensional
PS method is a natural extension of the PS method (21) to con-
sider an ensemble of systems. We present simulation and experi-
mental results of optimal broadband excitation and inversion
pulses as applied to protein NMR spectroscopy derived by the
proposed PS methods.

Theory

Control Problem of Robust Pulse Design. The statistical properties
of an ensemble of quantum systems are described by its density
matrix. Under the Markovian approximation, the evolution of the
density matrix of an open quantum system (i.e., in the presence
of relaxation that is the dissipation due to random interactions
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between the system and its environment) is governed by the mas-
ter equation in the Lindblad form,

p=—ilH(t),p] = L(p), (1

where H (¢) is the system Hamiltonian that generates unitary evo-
lution, [,] is the matrix commutator, and L(p) models relaxation
(nonunitary dynamics) (22). The Hamiltonian H(f) can be de-
composed into H(t) = Hy + H,(t), where Hy is the free evolution
Hamiltonian and H, = Y u;(t)H; is the control Hamiltonian
used to manipulate the system by application of electromagnetic
pulses u;(¢) of appropriate shape and duration. A typical problem
in quantum control is to steer a system from some initial density
operator p(0) at t = 0 to, or as close as possible to, a desired tar-
get operator C. This is achieved by maximizing the expectation
value of C, (C) = tr{Cp(t)}, for any time ¢ € [0,T], in the presence
of relaxation. Combining the master equation as in Eq. 1 and the
relation d(C) /dt = tr{Cp(t)} yields a system of ordinary differen-
tial equations that describe the time evolution of an open quan-
tum system for the desired transfer p(0) — C (23),

x(t) = [%’d + i ui(t)%,}x(t), [2]

where x € R” is the state vector for ¢ € [0,7], whose elements x;,
i = 1,...,n, are expectation values of the operators participating in
the transfer; %, € R™" is a matrix representation related to the
operator H; and the superoperator L; and #; € R are related
to the operators H;.

The above Eq. 2 is an idealization assuming that %, is the
same for all members of a quantum ensemble and that each sys-
tem experiences the same effect of the applied control field u;(t).
In practice, however, (e.g., NMR experiments) there may be var-
iations in the matrices #; and %; across the spin population due
to differences in chemical environments, relaxation rates, and
applied control fields. Practical considerations including power
and time limitations, path and terminal constraints as well as
those variations in the system Hamiltonian give rise to a new class
of optimal control problems of parameterized bilinear systems,

minll{(p(T,x(T,s)) +AT3’(x(t,s),u(t))dt}ds

s.t.%x(t,s) = {%d(s) + 2ui(t)%i(s)}x(t,s),

e(x(0,s),x(T,s)) =0,

gx(t,s),u(t)) <0, VseQcRY viel[0,T], I[3]
where the cost functional contains a terminal cost ¢, depending
on the final state of the system at the terminal time = T, and a
running cost Z, depending on the time history of the state and
control variables; x € R”, u € R™, s € Q c R? is a parameter
vector characterizing variations in the system dynamics, and Q
is a compact d-dimensional interval, #,;, #;: Q+— R™" are
square matrices; and e and g denote endpoint conditions and
path constraints, respectively. Note that in more general cases,
the system and control Hamiltonian can be time-dependent,
and hence #,; = #,(t,s) and #; = #;(t,s), due to, e.g., random
fluctuations.

Pulse design problems modeled as in Eq. 3 are in general
analytically intractable. It is then imperative to develop robust
numerical methods to solve these problems. Before computing
an optimal pulse, understanding whether a pulse exists for a
desired transfer is of fundamental importance.

1880 | www.pnas.org/cgi/doi/10.1073/pnas.1009797108

Motivation for RF Pulse Design via Polynomial Approximations. A
representative example in the control of a continuum of dynami-
cal systems as modeled in Eq. 3 is broadband pulse design in
NMR spectroscopy and imaging. The evolution of the bulk mag-
netization of a sample of nuclear spins in a static magnetic field,
By, follows the Bloch equations (7). In NMR experiments, one
needs to simultaneously excite spin populations, on the order
of Avogadro’s number, between desired states of interest with dis-
persion in their Larmor frequencies and in the presence of rf and
B, inhomogeneity. Mathematically, it is then natural to consider a
continuum of Bloch systems parameterized by o € [o;,a,] C R
and e € [1-8,1+3], 0 <8 < 1, modeling Larmor dispersion
and rf inhomogeneity, respectively; i.e.,

%M(I,m,e) = [0Q, + eB,,(1)Q, + B, () QM (t.0.€). [4]

where M (t,0,e) denotes the magnetization vector at time ¢ of the
spin characterized by the parameter vector s = (w,€), (Byy, Byy) is
the respective rf pulse applied in the x and y axis, and Q,, Q,,
and Q, are the generators of rotation around the x, y, and z axis,
respectively. In the context of NMR and MRI, for example, a
control law (B, B},) that makes the transfer from a constant
function M(0,m,e) = (0,0,1) to another constant function
M(T,w,e) = (1,0,0) corresponds to a broadband 3§ pulse with
the duration T in the presence of rf inhomogeneity. The existence
of rf pulses that achieve a desired transfer is then related to the
controllability property of the system as in Eq. 4. This system is
said to be controllable if for any given pair of initial and final
states there exists at least one control law (B, B) that drives
the system between these two states.

The controllability of a family of Bloch systems of Avogadro-
scale, mathematically represented as in Eq. 4, can be understood
by studying the Lie algebra generated by the set of matrices
{0Q,.6Q,.eQ, }, where ® € [w;.m,] and e € [1 — 8,1 + §]. Perform-
ing recursive Lie brackets of these matrices, e.g., [0Q,,eQ],
[0Q,.[0Q,,[0Q,.eQ)]]], etc., yields new generators of the kind
{0"e¥*1Q.}, m, £ =0,1,2,.... Using these generators, we can
produce rotation of the form,

exp{Z(szfwm)s2f+lgx}, m¢=0,12,..., [5]
14 m

simply by piecewise constant controls (SI 7ext). Therefore, produ-
cing any desired (w,e)-dependent rotation around the x axis,
exp{a(w,e)Q,}, is possible by appropriate choice of the coeffi-
cientst,,, in Eq. 5such that ¥, £,,,0™ = p,(®) and ¥ p,(0)e* '~
a(w,g) over [®,m,] X [1 — 8,1 + §]. Similar Lie bracket construc-
tion of higher orders and the subsequent polynomial approxima-
tions can be applied to produce (w,e)-dependent rotation around
the y axis. The ability of synthesizing these parameter-dependent
rotations allows us to generate any three-dimensional rotation,
O(w,g), by Euler angle decomposition ©(w,.e) = exp{a(w.e)Q, }
exp{f(w.e)Q,} exp{y(w.e)}. Therefore, there exists a pulse
that is able to produce any arbitrary rotation dependent on the
Larmor dispersion, o, and rf inhomogeneity, .

Although the procedure of implementing successive Lie brack-
eting to generate polynomial evolutions as in Eq. 5 introduces a
constructive scheme to design an actual rf pulse, it is not efficient.
These ideas, however, lead us to develop a numerical method
based on PS approximations.

A Unified Computational Method for Pulse Design. The idea of
converting the problem of pulse design into a problem of poly-
nomial approximation suggests that constructing relevant poly-
nomials should play a central role in a unified computational
method for control of quantum ensembles. Solving optimal

Li et al.
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ensemble control problems as in Eq. 3 numerically requires not
only discretization in the time domain ¢ € [0,7], but also sampling
in the parameter domain s € R?. To fulfill these requirements, we
use PS techniques to approximate the continuous state and con-
trol functions of the system in Eq. 3 with interpolating polyno-
mials. The PS method employs spectral collocation in which the
differential equation describing the state dynamics is enforced at
specific nodes. Developed to solve partial differential equations,
these methods have been recently adopted to solve optimal con-
trol problems (21, 24).

We focus on Legendre PS methods and, without loss of gen-
erality, consider the transformed optimal control problem on the
time domain ¢ € [-1,1]. The underlying dependence on the
Legendre orthogonal polynomial basis leads to the property of
spectral accuracy, which is analogous to the Fourier series expan-
sion for periodic functions (25). The Chebyshev equioscillation
theorem states that for a fixed order an interpolating polynomial
is the best approximating polynomial to a continuous function on
the interval of [—1,1], as evaluated by the uniform norm. The cen-
tral idea is, therefore, to approximate the continuous state and
control functions, x(f) and u(¢), by Nth order interpolating poly-
nomials, Iyx(t) and Iyu(t), in terms of the Lagrange polynomial
basis ¢ (),

INX Z kak [6]

u(t) =~ Iyu(t)

Zukfk (7]

By using the Legendre—Gauss—Lobatto (LGL) nodes as the col-
location nodes, Egs. 6 and 7 achieve close to optimal interpola-
tion error (25). The LGL nodes, ¢, j = 0.....N, are defined by
the union of the endpoints, {t, = -1ty = 1} and the roots of
the derivative of the Nth order Legendre polynomial. By the col-
location property, () = 8y, of the Lagrange polynomials we
have Iyx(t;) =X 7x(j) and Iyu(t) = it; = u(t;) for j=0,....N.
Note that the LGL node dlstrlbutlon is nonunlform and the hlgh
density of nodes near the endpoints is one of the key properties of
PS discretizations by which the Runge phenomenon is effectively
suppressed (21). The derivative of Iyx(¢) at the LGL node ¢ is
given by

N
= Dy, (8]

k=0

INX Zxkfk

where Dy, are elements of the constant (N + 1) x (N + 1) differ-
entiation matrix (25). With Eq. 8 and the natural discretization of
the dynamics at the LGL nodes, the differential equations de-
scribing the system as in Eq. 3 can be transformed to a series
of algebraic equality constraints.

In addition, the integral cost functional in the optimal control
problem (Eq. 3) can be approximated by the LGL integration
rule, as will be presented in Eq. 11. This approximation is exact
for & € P,y_;, polynomials of degree at most 2N — 1, when & is
evaluated at the LGL nodes (21).

PS Discretization and Optimal Sampling. A multidimensional exten-
sion can be devised to approximate the state and control func-
tions with variations, x(¢,s) and u(t,s), s € R¢Y. For example,
for s € [a.b] C R, x(t,s) can be approximated by a two-dimen-
sional interpolating polynomial,

N

N,
(05) ™ Ty x(5) = zxk a0 X Sutro) ) o)
k=0 “r=0

[9]
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with the derivative at the LGL nodes #; and s; in the ¢ and s
domain, respectively,

N
5IN><Nx (ti,57) ZDzk(Zxkr » ) = ZDik)_ij, [10]
k=0

where X; = x(#.s;). It is straightforward to extend the same
concept to the case of higher dimension fors € R, d > 1. Apply-
ing the Gauss-Lobatto integration with Egs. 9 and 10, we finally
arrive at the following finite-dimensional constrained minimiza-
tion problem (for s € [a,b] C R):

Ny

Z{ (T, xn,) + 223)6”,14 }

r=0
s.t. Z kxkr: |:% +Zuu%:| s
i=1

e(Xo,Xn,) = 0,

g, 1) <0,

vVje{01,. N}, re {0,1.....N,}, [11]
where #7, and 7 are matrices representing the Hamiltonians
with respect to the rth parameterized system; wV and wis are
the LGL integration weights with respect to the time and para-
meter domains, respectively; and i; is the value of the control
function u; at the jth LGL node . Solvers for this type of con-
strained minimization problem (e.g., KNITRO, SNOPT) and im-
plementation environments (e.g., MATLAB, AMPL) are readily
available and straightforward to implement. See SI Zext for more

details about the PS method and its implementation.

Simulation Results

A fundamental challenge in pulse design for magnetic resonance
applications is to develop robust pulses that compensate for the
Larmor dispersion and rf inhomogeneity over the sample. We
demonstrate our method by the development of broadband
#/2 and # pulses in the presence of rf inhomogeneity. The derived
pulses have been implemented experimentally, which verifies
both the numerical results as well as the PS method as an effective
technique for pulse design.

We convert the related optimal control problem, which describes
such broadband pulse design objectives, through PS discretization
and sampling to yield a constrained nonlinear optimization
problem. As presented in Eq. 4, in the presence of Larmor disper-
sion and rf inhomogeneity, the bulk magnetization of spins can be
represented as M (t,w,¢). Using the PS method, this magnetization
can be approximated by an interpolating polynomial of three vari-
ables; i.e., M(t.w.e) = Inun, v, M (t.0.€), with the derivative at the
LGL nodes ¢;, w;, and ¢ in the ¢, @, and £ domain, respectively,

d
7 — Iy, <N, M (2 Z Dy,

where rhljk = M(t],a)',ﬁ‘k).

In a #/2 broadband pulse design optimization, we take the
objective, or performance, unless otherwise noted, to maximize
the average of the x component of the terminal states. Fig. 1 plots
the optimal broadband excitation pulse shape for a bandwidth of
[-20,20] kHz with limited amplitude (less than 20 kHz) and max-
imum duration of 100 ps. With relatively coarse discretization
(N =30) and sampling (N, = 8) chosen with the LGL nodes,
the PS method achieves a performance of 0.98. In the commonly
used gradient methods, optimizations are usually performed in
0.5-ps steps over time (corresponding to N = 200) and 0.5 kHz
over the resonance offset space (N, = 80), which may achieve a
comparable performance (13). Increasing the number of discre-
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Fig. 1. The calculated shape of the optimal broadband z/2 pulse and the si-
mulated excitation profile as a function of resonance offset. (A) The optimal
broadband pulse shape was derived by the multivariate PS method with the
respective number of discretizationsintime and frequency, N = 30andN,, = 8,
to cover the bandwidth [-20,20] kHz with limited rf amplitude B, (t) =

B3, (t) + B}, (t) < 20 kHz for all t and maximum duration T = 100 ps. (B) The

corresponding excitation profile has an average x value of 0.98.

tizations or samples in the PS method, as shown in the conver-
gence section, would yield an increased objective value. In addi-
tion to achieving high performance values, the PS method
requires no offline computation of gradients or system propaga-
tors, which are essential for gradient methods. Such calculations
can be time consuming and create a barrier of entry for experi-
mentalists seeking to apply these methods to solve their pro-
blems. For a detailed comparison of the PS method with other
numerical algorithms see SI Text.
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Fig. 2. The calculated shape of the optimal broadband z/2 pulse and the
simulated excitation profile as a function of resonance offset and rf-inhomo-
geneity. (A) The minimum-energy broadband pulse shape was derived by the
multivariate PS method with the respective number of discretizations in time,
frequency, and rf-inhomogeneity, N = 24, N, = 8, and N, = 1, to cover the
bandwidth [-20,20] kHz with 10% rf-inhomogeneity and with limited rf am-
plitude B, (t) < 20 kHz for all t and maximum duration T = 100 ps. (B) The
corresponding excitation profile is shown with an average x value of 0.98.
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performance

12 14 16 18 20 22 24 26 28 30 32 34 36
N
Fig. 3. Numerical convergence of PS discretization in the time domain. The per-
formance of the optimal broadband = /2 pulse converges to unity as the number

of discretizations, N, gets large. Parameter values: maximum rf amplitude =
20 kHz, bandwidth = [-20,20] kHz, duration = 100 ps, and fixed N,, = 8.

The PS method, as a flexible framework for solving optimal
control problems, can easily be modified to solve other types
of objective criteria, including minimum-energy and time-optimal
pulses. Fig. 2, for example, shows the pulse shape and the corre-
sponding simulated excitation profile as designed to minimize rf
energy, subject to the performance requirement of 0.98, while
compensating for the bandwidth @ € [-20,20] kHz as well as
10% rf inhomogeneity with maximum duration of 100 ps. The
pulse achieves an average performance of 0.98 with N = 24,
N, =38, and N, = 1. An optimal pulse designed with the same
parameters, but with an objective to maximize the average of
the x component of the terminal states illustrates that the pulse
in Fig. 2 achieves the same performance (within 0.3%) with 16%
less rf energy (see SI Text). Note the PS method naturally finds
continuous and smooth pulses because of the use of polynomial
approximations, which are experimentally preferred. The adapt-
ability and generality of the PS method is what makes it an
excellent candidate for a universal and unified method for pulse
design.

It is of fundamental importance to show that the solution
achieved from the discretized problem as in Eq. 11 is still a solu-
tion to the original continuous problem as in Eq. 3. In particular,
as the number of discretizations (or samples) gets large, the
objective value of the discretized optimization problem should
converge to the objective value of an optimal solution of the ori-
ginal continuous problem. Figs. 3 and 4 present the numerical
convergence of the performance of a broadband n/2 pulse over
increasing N and N, respectively. These figures also illustrate
the fast convergence rate and low discretization number charac-
teristic of the PS method.

Experimental Results

The excitation profile of the optimal broadband =/2 pulse pre-
sented in Fig. 14 is shown in Fig. 5, which was recorded with
resonance offset ranging from —30 to 30 kHz in steps of 2 kHz.
The result demonstrates a uniform excitation over the bandwidth
[-20,20] kHz as designed. The optimal pulse derived by the mul-
tidimensional PS method has a noticeably higher average excita-
tion profile than the conventional square pulse, especially near
the edges of the bandwidth. The phase errors at the edge of
the designed excitation range are less than 10° for the optimal
pulse and greater than 60° for the hard pulse. Fig. 64 illustrates

1 T T
075 | ~ , ]
051 , ~ ]

0.25 1

performance

4 5 6 7 8 9 10 11 12 13 14 15
N

w

Fig. 4. Numerical convergence of optimal sampling. The performance of
the optimal broadband /2 pulse converges to unity as the number of sam-
ples, N,, gets large. Parameter values: maximum rf amplitude = 20 kHz,
bandwidth = [-20,20] kHz, duration = 100 ps, and fixed N = 30.
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Fig. 5. Experimental excitation profiles of broadband z/2 pulses. The
excitation profiles correspond to the optimal broadband pulse (red) in Fig. 1
(designed to cover the bandwidth [-20,20] kHz) and a conventional hard
pulse (black).

an optimal broadband inversion pulse designed to cover the
bandwidth [-40,40] kHz with its amplitude limited under 20 kHz.
The corresponding inversion profile recorded with resonance
offset ranging from —60 to 60 kHz in steps of 2 kHz is shown
in Fig. 6B and highlights the larger difference between the reso-
nance offset profiles for the hard pulse (black) and optimal pulse
(red) for the case of the longer duration and wider bandwidth
inversion pulse.

Furthermore, we show that these pulses can be readily incor-
porated in standard pulse sequences routinely used in solution
state NMR spectroscopy. In high-field magnets (>700 MHz), it
is challenging to uniformly excite the entire spectral range with
a standard hard pulse. This is particularly difficult when exciting
the carbon nuclei in protein NMR spectroscopy where the che-
mical shifts of interest range from 10 ppm (methyls) to 140 ppm
(aromatics). This 130-ppm range on a 900-MHz spectrometer is
approximately 30 kHz. The inability of a standard hard pulse to
cover this bandwidth is readily observable in a 'H-'3C correlated
heteronuclear single quantum coherence (HSQC) spectrum.
In Fig. 74 we show that the peaks in the downfield region
(60-80 ppm) of the 'H-3C correlated HSQC spectra of

N
o

amplitude (kHz) >

1 ] ]
60 40 0 -40 -60
resonance offset (kHz)

Fig. 6. Experimental excitation profiles of broadband = pulses. (A) The op-
timal broadband z pulse shape was derived by the multivariate PS method
with the respective number of discretizations in time and frequency, N = 36
and N, = 12, to cover the bandwidth [-40,40] kHz with limited rf amplitude
B4 (t) < 20 kHz for all t and maximum duration T = 120 ps. (B) The excitation
profiles correspond to the optimal broadband pulse (red) and conventional
hard pulse (black).
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Fig. 7. HSQC spectra comparison. The "H-'3C correlated HSQC spectra of
['3C,'5N] GB1 sample using optimal inversion pulses (A), standard Bruker
adiabatic inversion pulses (Crp60.0.5.20.1) (B), and conventional hard inver-
sions (C). Spectra on the left were recorded when the '*C-inversion pulses
were on resonance (at 50 ppm), and the spectra on the right were recorded
when the '3C-inversion pulses were 31 kHz (at —200 ppm) off resonance to
the up-field.

[13C,'>N] GB1 were still observable when the carrier frequency
of the optimal inversion pulse was shifted to the up-field
(31 kHz). However, when we used an adiabatic '3*C inversion

PNAS | February 1,2011 | vol. 108 | no.5 | 1883

BIOPHYSICS AND
COMPUTATIONAL BIOLOGY



pulse (Fig. 7B) or a conventional hard = pulse (Fig. 7C) at a re-
sonance offset of 250 ppm (31 kHz), a majority of the resonances
either were absent or significantly diminished in intensity. The
optimal pulse yields approximately a 20 times sensitivity enhance-
ment over the adiabatic pulse (see SI Text) with a much shorter
duration (120 versus 500 ps).

Conclusion

Manipulating a large ensemble of dynamical systems is one of the
key steps in many compelling applications such as protein NMR
spectroscopy, quantum computing, and quantum optics. In this
article, we introduced the notion of mapping pulse design to a
problem of polynomial approximation by the use of tools from
control theory. Accordingly, we developed a unified computa-
tional method for optimal pulse design based on PS approxima-
tions, which features coarse discretization with spectral accuracy
producing smooth solutions. This computational method pro-
vides flexibilities in designing optimal pulses for any desired ob-
jective and can be applied to consider any initial distribution of
system states. Optimal broadband pulses with reduced rf energy
and duration derived by this method have been implemented in
protein NMR spectroscopy, and the experimental excitation
profiles demonstrate significant performance improvements over
conventional hard and adiabatic pulses. The method is not re-
stricted to the systems studied here but is universal to closed
and open quantum systems and further to broad areas of control
of ensembles, such as those arising in systems biology and neu-
roscience (26).

Materials and Methods

Computational. The PS method was implemented in MATLAB (Figs. 1 and 6A)
and AMPL (Fig. 2), and the optimization was solved by the nonlinear solver
KNITRO from Ziena Optimization. The parameters of the dynamics were nor-
malized by the rf amplitude, A, so that the pulse in Fig. 1 has the following
normalized parameters: A = 1, bandwidth = [-1,1], and duration T = 2 x 2z.
Piggybacking optimizations for larger N, N,, and N, on previous solutions
was used to facilitate faster convergence; however, no prior knowledge
was used to seed initial guesses (constant initial rf pulses were used). Note
that an educated initial guess will facilitate faster convergence. The optimi-
zation procedure is outlined below, in which p indicates the number of suc-
cessive optimizations and (u,v) denotes (B, By).

1. Problem: Specify the bandwidth, B; rf inhomogeneity, d; and duration, T.
2. Input: For pass p = 0, select N9, N9, N,
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3. Cold Start: Guess constant controls, ul(t) = vI9(t) = 1.
4. sampling: Select w = Bx LGLM and e = 1 + (d x LGLM ).
5. Initialization: Evolve fixed initial state, M(0,w;ec) = Mgy, and Eq. 4 for

each (wj,g) pair using the defined ul, vIP! controls = Mﬁ](t).

6. Discretization: Select nodes {t;} = I (LGLM + 1). Discretize Mﬁ](t), ull(t),
and vPl(t) at the nodes, t; = rﬁz’,l DE.”], V,Lp].

7. Solver: Supply mﬂ D,.M, \7,.“’] and the discretized optimal control problem
(Eq. 11) = updated mf", aP™Y, vp*.

8. Interpolate: Create interpolation polynomial from & ", 7P o yp+1(t),
vipH1l(t).

9. Convergence: If /P — JPl| < threshold, exit and return uP+1(t), vIP+1(t)
as the optimal controls.

10. Update: Select NP+1 > NP, NPT > NP NP > AP Set p = p + 1 and
go to Sampling.

1D Spectra. All experimental data were recorded on a 500-MHz Bruker
Avance spectrometer, equipped with a triple-resonance probe. The excita-
tion profiles were recorded using a '3C-iodomethane sample, dissolved in
D-chloroform (D, 99.8%, Cambridge Isotope Laboratory, Inc.). The '3C T,
relaxation time was measured to be 12.8 s. The maximum rf power was cali-
brated using a square pulse set at 20 kHz. To compare the performance of
conventional broadband pulses, including square and adiabatic pulses, with
optimal broadband excitation pulses developed by the PS method, z/2-exci-
tation and inversion profiles were measured. To obtain excitation profiles
(1D spectra) of z/2 pulses, each broadband r/2-excitation pulse was followed
by proton-decoupling detection with a fixed phase correction. The inversion
profiles were obtained according to Smith et al. (27).

2D Spectra. A ['3C,'>N] GB1 sample of 5 mM was used to record 'H-'3C cor-
related HSQC spectra. The optimal broadband inversion pulse, the standard
Bruker adiabatic inversion pulse (Crp60.0.5.20.1), and a conventional inver-
sion hard pulse were incorporated into a standard Burker pulse sequence,
hsqcctetgpsisp3, to record "H-'3C correlated HSQC spectra. The adiabatic
pulse has 7.7 kHz as the maximum amplitude and is 500 ps in length. These
HSQC spectra were recorded with both '3C-inversion pulses set to be on
resonance and 250 ppm up-field off resonance, respectively, comparing
the performance of these inversion pulses in a real experiment.
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