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Abstract—In real world applications, control is always per-
formed without perfect knowledge, perfect models, and often,
under changing conditions. Such circumstances are particularly
true of complex systems. As a result, application of control
theory to complex systems requires the development and imple-
mentation of control policies that are robust to unexpected and
potentially malicious changes to the underlying network. This
paper makes three important contributions along this direction.
First, we introduce a new definition of robustness which captures
realistic constraints imposed by many control problems. Second,
we develop a novel algorithm for computing this robustness
measure. Third, we conduct a thorough assessment of the control
robustness of different synthetic networks to a wide array
of attacks/network perturbations. We find that our robustness
measure is behaviorally different from other robustness measure-
ments in the literature and that the attacks considered highlight
a number of ways in which network properties correlate with
control robustness.

I. INTRODUCTION

Many complex systems — biological, social as well as tech-
nological — have been studied and understood in the light of
complex network topology and dynamics [1–4]. Recent work
has highlighted the importance of understanding the extent to
which complex networked systems are controllable [5, 6]. A
controllable system can be driven from any arbitrary state to
any desired state through the application of external inputs.
However, like any property dependent on the structure of the
system, controllability is sensitive to perturbations that occur
to the network. Understanding how network controllability
changes in the context of node or link failures as well as
which network structure designs have control schemes that are
most resilient to change is an essential part of making such
theoretical formalisms practically useful.

While work on robustness in the context of control is
nascent, a few papers have begun to investigate the robustness
of controllability to various failures and attacks. Following
broader interest in statistics surrounding the number of con-
trols (Nc) necessary to control a complex network (e.g., [5–8]),
these existing studies have primarily measured robustness as
the number of additional controls (Nc) required to maintain
full controllability following a change in the topology of the
network [9, 10].

Such a definition of robustness effectively makes the as-
sumption that new controls can be added to the network as

components fail: e.g., such a definition of robustness assumes
that one is always in a position to add more controls, only
that we have a preference to add as few controls as possible.
However, in practice, critical aspects of the system may be
unknown, resources constrained, and regions flagged for direct
control not easy to reach: thus, in many cases, controls cannot
be simply added without great cost.

With this in mind, in this paper we explore an alternative
definition of robustness concerned with how the number
of controllable (reachable) nodes (Nr) changes due to a
topological change (attack). Such a definition favors control
configurations that retain control over more of the network
rather than those which require fewer controls to be added
to regain full controllability. In order to distinguish these
notions of robustness, we refer to the existing definition as
control-based and our proposed definition as reachability-
based robustness (CR and RR, respectively). Different systems
and conditions will determine which of these definitions will
be appropriate to use - but certainly both capture practical
constraints and objectives.

This paper makes three core contributions. First, we formal-
ize reachability-based robustness. This formalization involves
the development of a highly non-trivial algorithm which has
been alluded to in literature, but (to our knowledge) has
never before been flushed out or published [11, 12]. Second,
using random models, we establish how control-based and
reachability-based definitions of robustness differ (and are
similar) both over different types of networks and different
types of attacks. Where attacks are concerned, we consider
a much more comprehensive set than has been evaluated
elsewhere in the literature. Specifically, we assess all standard
node and edge attacks which depend on first-order degree
properties. This extensive set of attacks constitutes our third
contribution and reveals that there are significantly more
nuanced factors determining the most effective attacks (and
most robust configurations) than what is currently reported in
the literature. Moreover, our study raises a number of questions
about the relationship of robustness to network structure in
general and to the nature of cacti - the control structures that
govern the control of complex systems.



II. BACKGROUND

Existing work and the present paper employ the formalism
of structural controllability in order to make the computation
of control properties tractable for large-scale systems [13].
Here we first briefly review structural controllability and then
discuss prior work on the robustness of controllability.

A. Structural Controllability

For a linear time-invariant control system without intrinsic
node dynamics, the state of a node xi(t) is governed by the
equation,

ẋ(t) = Ax(t) + Bu(t) (1)

where x(t) = [x1(t), x2(t), ..., xN (t)]T is the vector denoting
the state of the N nodes at time t, A is the N ×N adjacency
matrix of the network for which the component aij is the edge
weight from node xj to node xi. The N×m matrix B indicates
nodes where the input control signals are applied. The system
(A,B) is controllable if and only if the controllability matrix

C = [B,AB,A2B, ..., AN−1B] (2)

has full rank, i.e., rank(C) = N . Because this rank is com-
putationally infeasible to compute for large-scale networks,
we adopt tools from structural control to make the analysis
tractable. It can be shown that if the system is structurally
controllable, it is controllable for almost all choices of edge
weights except for some pathological cases [5]. Given a
network connectivity encoded in A, the number and location
of the minimum control inputs to fully control a network can
be found using maximum unweighted matching [5]. Using
edges in the matching, stems and cycles can be formed
which together compose the control cacti structure (see [5]
for terminology).

B. Prior Work on Robustness of Controllability

To our knowledge, all existing studies of robustness of
controllability have measured the increase in the minimum
number of controls required as a proxy for the reduction in
controllability due to a failure. We refer to this as control-
based robustness (CR). Liu et al. [5] showed that sparse and
heterogeneous networks are difficult to control and provided
a method to observe robustness under edge failures by cal-
culating fraction of critical, redundant and ordinary edges
which are classified as such based on change in Nc upon
their removal. Pu et al. [10] investigated the behavior of
controllability of various networks under random, targeted,
and cascading failures of nodes. They found that degree-based
attacks are more effective (damaging) than random attacks
for directed Erdős-Rényi (ER) and directed scale-free (SF)
networks. Furthermore, they observed that a larger number of
links and greater network homogeneity increases the robust-
ness of network controllability. Finally, Nie et al. [9] analyzed
robustness of control under random and targeted cascading
failures. They report that ER networks with smaller average
degrees are more robust against a highest-load cascading attack
while SF networks with smaller power-law exponents are

more vulnerable than those with large exponents. Furthermore,
random attacks are more effective than targeted attacks for less
heterogeneous networks under moderate edge removal rates.

III. METHODS AND DATA

In this section, we define reachability-based robustness, the
algorithmic means by which it is calculated, and the network
models as well as the attacks which will be used to empirically
assess the attributes of the both control- and reachability-based
robustness.

A. Reachability-based Robustness

As mentioned previously, here we investigate a robustness
measure that focuses on how much of the network remains
under control in the presence of an attack. Unlike control-
based robustness, in our measure, no new controls are added.
The original set of controls designed for the original network
remain in place (except those whose nodes were removed
by the attack, if any). Our measure of robustness asks how
many nodes are still under control after the perturbation
to the network topology. To assess the robustness as the
perturbation becomes increasingly severe, we consider average
controllability (N̂r), given by the area under the controllability
curve in Figures 3 & 4, for the perturbation ranging from
affecting 0 to 50% of the network (nodes or edges, depending
on the attack). In this study, we show this area graphically
(see Figure 7) but in large-scale work, this area could be
summarized numerically and subjected to more quantitative
analysis.

Notice, however, that our formulation thus far requires
a particular initial assignment of controls to nodes in the
network (called the control configuration). In order to obtain a
robustness measure for a network, we sample multiple control
configurations for the network and report the robustness score
N̂r averaged over these configurations. Though the choice
of configurations can be arbitrary, in this study we used a
sample of 10 different configurations that can fully control
an unperturbed network. This choice of configurations (those
that can fully control the network) enables us to compare
reachability-based robustness to control-based robustness.

Returning to the issue of computing our robustness value
for a network, however, we still have a problem. Specifically,
how do we compute the number of nodes in an arbitrary
network controlled by an arbitrary control configuration (the
need for handling an “arbitrary” network stems from the fact
that a perturbation could affect a network in any number
of ways)? In order to do this, we require a simple and
efficient algorithm for finding the cacti control structure given
a fixed set of controls. While this problem of finding the
generic dimension of controllable subspace has been discussed
in literature [11, 12], quite remarkably, a clear algorithmic
approach appears to be missing. Presenting this algorithm is
the first of our contributions.

To understand the problem, consider the example in Figure
1(a), which shows a network G with two controls X and Y
attached to driver nodes A and B. The number of minimum



Fig. 1: (a) An example network G with driver nodes A and B.
Stems are highlighted in blue, cycles in green (b) Nc increases by 1
as node C is removed and cycle is broken into a stem which requires
a new control Z (c) Nr decreases by 3 as node C is removed and
stem starting with D becomes uncontrollable

controls Nc is 2 while number of controllable nodes Nr is
8. Figure 1(b) demonstrates an increase in Nc after node C
is removed from G. After removal of C, in order to fully
control the network, a new control Z needs to be attached to
the unmatched node D. Thus, Nc increases to 3. On the other
hand, Figure 1(c) shows the decrease in controllable nodes Nr

given the same set of controls (X and Y ) as before percolation.
The value of Nr reduces to 5 since the stem starting with node
D is no longer reachable using controls X and Y .

In order to calculate Nr given controls X and Y , Hosoe’s
theorem can be used [11]. Consider the linear system given in
Equation 1 as a graph G(A,B), the generic dimension of the
controllability matrix C (Equation 2) is given as

rank(C) = max
Gsub∈G

|E(Gsub)| (3)

where Gsub is the set of all stem/cycle disjoint subgraphs
of the G(A,B) that are reachable from controls B and
|E(Gsub)| is the number of edges in the subgraph Gsub.
Though the proof of the theorem is well presented, a algorithm
to calculate the rank is missing. On the other hand, Poljak
[12] gives a graph-theoretic proof of the theorem, which
describes a method to calculate the rank in Equation 3 as well
as the cacti structure by finding a maximum-weighted cycle
partition in a modified version of graph G(A,B). However,

Fig. 2: (a) An example network G with N = 5 nodes with external
control node U attached to driver node A (b) Bipartite graph with
2N nodes, a pair of +ve and -ve nodes for each node in G.

the solution presented therein involves solving an integer
linear program, which requires sophisticated linear program
solvers. In contrast, we employ a simpler graph-theoretic
algorithm. We convert the problem of finding maximum-
weighted cycle partition into that of finding perfect maximum-
weighted matching in a bipartite graph created from G(A,B)
(see Algorithm 1 and Figure 2). Using Fibonacci Heap in the
implementation, we have the time complexity of the algorithm
to be O(NL+mN2+4N2log2N) where N and L are number
of nodes and edges in G(A,B) respectively and m is the
number of controls.

Algorithm 1 Algorithm to find Cacti for fixed controls

Input: Network G, Control node set C (G includes nodes in
C and edges to driver nodes)

Output: Cacti representing control structure
1: G′ ← G−x, x not reachable from C // using Depth First

Search
2: Create a Bipartite Graph GB with:
3: . 2|V (G′)| nodes, a pair of +ve and -ve nodes for each

node in G′

4: for all edge (u, v) in G′ do
5: Add an edge (u+, v−) to GB with weight 1
6: end for
7: for all control node c in C do
8: d← Neighbor(c) // d is driver node
9: Add an edge (c+, d−) to GB with weight 1

10: for all node x in G′ such that x is not in C do
11: Add an edge (x+, c−) to GB with weight 0
12: end for
13: end for
14: for all node u in G′ do
15: Add an edge (u+, u−) to GB with weight 0 // self loop
16: end for

// Add large enough weight to make it a perfect matching
17: Add weight W to all edges in GB such that

W >
∑

weight(e),∀e ∈ Edges(GB)
18: Perform weighted maximum matching algorithm on GB

to get a matching M
19: Map edges in M back to edges in G and join them to form

stems and cycles of cacti.
20: Number of controllable nodes is number of matched nodes

in cacti // control nodes in C are not matched

B. Network Models and Data

In this work we focus our study on synthetic network
models. Because the formation mechanisms of these synthetic
models are known to us, they offer an opportunity to estab-
lish connections between the robustness of controllability in
networks that have features which are frequently observed in
nature. One of the distinguishing features of this work over
the current work on the robustness of network controllability
is our broader survey of synthetic network models. Previous
work has established that while these models share some



common statistics (e.g., scale-free degree distribution) they
show significant differences in their control properties [6].

In this study, all networks have N = 1000 nodes; av-
erage degrees k = 2, 4, 6, 8, 10, 12 were considered except
for duplication divergence networks, in which the formation
mechanisms yields networks with highly varied average de-
gree. These average degree values represent already a highly
conservative approximation of the average degrees seen in
real world networks. In all results presented, each realization
of network type and parameter values is generated with 10
different instances to provide a notion of expected (average)
behavior. Even with this rather small level of averaging, for
N = 1000 the error bars are very small in most cases,
underscoring that our results are stable and this approach is
sufficient to observe the expected control properties of these
networks. The network models are described below.

Erdős-Rényi (ER) Using random connection model described
in [14], the random networks were generated until the number
of edges (E) was within an acceptable tolerance: |E−kN | <
0.001kN . The homogeneity of ER networks typically leads
to networks that have very few controls with relatively long
stems and cycles.
Barabási-Albert (BA) These networks were generated using
preferential attachment model presented in [15]. BA networks
are inherently acyclic, which limits the range of the effect that
a control can have in the network. Therefore, BA networks are
characterized by a large number of controls and short stems
and cycles.
Local Attachment (LA) The networks were created using
local attachment model [16], where N nodes are added incre-
mentally with m edges each. Of the m edges, r are connected
randomly from a new node to existing nodes in network,
while remaining m − r edges are connected to neighbors
of randomly chosen nodes. Clustering can be added to the
network by increasing the fraction m − r. We calculate r as
r = (1 − c)m, where different clustering values were chosen
as c = 0, 0.25, 0.5, 0.75. LA networks are also acyclic and
tend to exhibit similar control characteristics.
Duplication Divergence (DD) In duplication-divergence
model, a node is duplicated and its edges are kept with a
probability s [17]. Initial directed network which undergoes
duplication is taken as the network with an edge from both
0 to 1 and 1 to 0. Values for probability of duplication
s = 0.1, 0.3, 0.5, 0.7, 0.9 were considered. DD networks have
the most diverse control profiles of the synthetic networks
surveyed here.

C. Types of Attacks
While attacker models could potentially employ different

kinds of knowledge about the system, we focus on a scenario
in which attackers have access to fundamental structural infor-
mation: the degree of the nodes in the network. Pósfai et al.
[7] explored the role that various relative degree relationships
determine properties of network controllability. With this as
guidance, we consider such relative degree relationships in
our study of robustness of network controllability.

For targeted node attacks, we select the node to be attacked
based on its in-degree, out-degree, or total degree. A node may
be important, in the context of control, with high in-degree
because it is a node through which many potential paths may
pass or with high out-degree because it has the potential to
propagate the influence of a control to many neighbors. With
regard to edge attacks, we consider the degree information of
the source (s) and target (t) nodes of the edge. We considered
the following five attacks which are functions of the degree of
s and t. Edges were selected in descending order of the score
returned by a given function.

. in-in deg: in degree(s) + in degree(t)

. in-out deg: in degree(s) + out degree(t)

. out-in deg: out degree(s) + in degree(t)

. out-out deg: out degree(s) + out degree(t)

. total deg: total degree(s) + total degree(t)

These combinations explore the extent to which an edge is
important due to being a funnel (in-in), being a source (out-
out), being a bridge (in-out), or other such functions. Finally,
because we are interested in the contrast between random
failures and targeted attacks, we also evaluate a random node
and edge percolation “attack”.

IV. RESULTS

In this section we summarize how we generated results that
show effects of node and edge attacks on reachability- and
control-based robustness for different networks. We explain
the plots involved and highlight key observations that can be
made from plots.

While the node- and edge-based attacks differ to some
extent, the approach to assessing robustness (both numerically
and visually) was consistent across network models and attack
types. As seen in Figures 3 and 4, we take the control con-
figuration to be a minimum control set required to control the
original (unperturbed) network. Because the minimum controls
guarantee complete controllability, the fraction of controllable
nodes, nr = Nr/N = 1, before the percolation process
begins. With each step, 5% of nodes/edges are removed up
to at total of 50% percolation. As opposed to Pu et al. [10],
we do not keep any node in network after it is removed (or
fully disconnected as is the case when edges are removed),
so that the change in Nr reflects also the change in network
size. Because the number and location of the controls cannot
change, when the nodes they directly connect to are removed,
that control will lose it’s connection to the network and
no longer be able to contribute to controlling the networks.
Figures 3 and 4 show the change in the fraction of controllable
nodes nr for different networks with respect to node/edge
percolation with different attacks.

A. Initial Observations

Node attacks. There are a few important observations that can
be inferred from the plots in Figure 3. Unlike [10], we find
that degree-based attacks are not always more effective (more
damaging) than random attack. For example, in the case of



Fig. 3: The robustness of control structures in the four network models to degree node-based attacks. Due to space limitations, only the
results for one parameter choice are shown — these are representative of all other parameter choices.

BA and LA networks, random attack does nearly the same
as the most effective, high out-degree, attack. In the case of
DD and ER networks random attack is the least effective. We
also find significant variations among different types of degree-
based attacks. High out-degree attacks stands out as being the
most effective in most of the networks, while high in-degree
and total degree attacks show considerable difference in effec-
tiveness across network types. These differences underscore
the importance of evaluating various metrics for robustness of
network controllability.

Edge attacks. As seen in Figure 4, the in-out degree attack
initially starts out being less effective than a random attack
but after a few steps, it rapidly degrades controllability. This
effect can be better explained by observing the change in the
number of strongly connected components (SCC) as well as
the change in average stem/cycle lengths (described next).
Also noteworthy is that out-in degree and total degree are
almost always least effective, while random attack maintains
average effectiveness. This further confirms our proposition
that degree-based attacks exhibit varying effectiveness relative
to random attack for different networks and suggesting the
role of more nuanced network features in the phenomena.

B. Connected Components and Stem Lengths

In order to understand the behavior of attacks on robustness
we analyzed how the number of strongly-connected com-
ponents NSCC and average stem length vary under partic-
ular edge attacks (see Figure 6). Average stem length is
the weighted mean of lengths of stems in the cacti control
structure, which gives an idea of how an attack changes the
cacti. Since BA and LA networks are acyclic, NSCC remains
constant at 1000 hence not shown in the figures. While for
ER networks, we can see that the effectiveness of an attack
is correlated with an increase in NSCC . It can be observed
that the in-out degree attack rapidly creates a larger number
of SCCs than other attacks. Also, there is a strong correlation
between change in average stem length shown in Figure 6(b)
& 6(c) and change in controllable nodes shown in Figure 4.
For example, the in-out attack, which tends to be the most
effective, also tends to create shorter stems on average after
percolation.

V. DISCUSSION

A. Robustness definitions have different behavior

Figures 5(a) and (b) show how the number of controllable
nodes, Nr (or fraction nr = Nr/N ), decreases and the number
of minimum controls, Nc, increases for BA and ER networks



Fig. 4: The robustness of control structures in the four network models to degree edge-based attacks. Due to space limitations, only the
results for one parameter choice are shown — these are representative of all other parameter choices.

Fig. 5: Comparison showing Reachability- and Control-based robustness measures for ER an BA networks. nr = Nr/N is fraction of
controllable nodes and Nc is minimum number of controls required for full controllability



Fig. 6: Variation in number of strongly connected components and average stem length under edge attacks

BA DD ER LA, c = 0 LA, c = 0.5

Fig. 7: Reachability-based robustness for all networks grouped by type. Five data points, each for an average degree k=2,4,6,8,10 (or
probability s=0.1, 0.3, 0.5, 0.7, 0.9 in case of DD) is shown for each network type.

under edge percolation. In order to verify whether changes in
Nr tell us a different story about robustness of networks than
changes in Nc, in Figure 5(a) and (b) we also plotted ∆Nr(t)−
∆Nc(t) for each percolation step t, where ∆Nr(t) = Nr(0)−
Nr(t) and ∆Nc(t) = Nc(t) − Nr(0). The intuition here is
to capture increase in Nc after percolation and compare it
with decrease in Nr. We can see that in case of BA network,
difference between the decrease in Nr and the increase in Nc

for some attacks is almost negligible. While for more effective
attacks such as in-out degree attack, there is a greater decrease
in Nr for a given increase in Nc. This gap between Nr and Nc

widens greatly in case of ER network. This strongly suggests
that Nr (reachability) based measures reveal different aspects

of network vulnerability to particular node- and edge-based
attacks compared with measures using Nc.

B. Robustness dependence on network types

Figure 7 highlights the extent to which different network
types have different responses to various attacks. The fact
that the robustness scores N̂r (or fraction n̂r = N̂r/N ) differ
indicates that clustering, degree homogeneity, the presence of
cycles, and other higher-order network features may impact a
particular network’s vulnerability to attack. While an investi-
gation into the nature of these signature differences is beyond
the scope and length of this paper, we can highlight a number
of intriguing trends which deserve attention in future work.



• Clustering does not affect robustness to node attacks.
Notice that BA networks and LA networks with high
clustering tend to exhibit similar behavior for all node
attacks. LA networks have both a scale-free degree dis-
tribution and clustering - thus the similarity in behavior
suggests that the addition of clustering does not affect the
overall vulnerability to node attacks.

• Degree distribution. Even though both LA with zero
clustering and ER are both random models, the former
creates acyclic networks and exhibits greater resistance
to attacks than ER which is more homogeneous than LA
and consists of cycles.

• Average degree sometimes can play a role. While space
does not permit visualizations, our analysis indicates that,
under node attacks, N̂r does not show much variability
across different average degrees except for the case of
ER networks. In the case of ER networks, robustness
increases with average degree (likely due to presence of
more edges).
Similarly for edge attacks, there is only slight change in
N̂r with increasing average degree, except for the case
of ER networks. It is surprising to find that the in-out
degree attack in fact is more effective with increase in
average degree. In-out degree attack is systematically the
most effective attack for all networks, as well as across
different average degrees.

C. Robustness dependence on attack types
While this point has already been indirectly explored above,

it is worth highlighting that Figure 7 (as well as the other
results figures) demonstrate the variable effect a given attack
can have. Interestingly, in some instances, node attacks have
more-or-less equivalent robustness scores; whereas in others,
the same attacks can have very different and highly variable
robustness scores. This perspective suggests that, in addition
to understanding how particular network structures achieve
differential degrees of robustness; another fruitful approach
might consider the means by which different attacks achieve
similar (or different) robustness levels across a wide array of
networks.

VI. CONCLUSION

The robustness of control structures will be an important
consideration when applying theory governing the control of
complex systems. In this paper we have proposed a new
measure of robustness which we consider to capture many of
the constraints that arise when controlling real-world systems.
We find that this measure functionally differs from existing
measures in the literature and that, when subjected to a variety
of node- and edge-based attacks, yields trends that suggest
ways in which network properties relate to the robustness of
control structures.
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