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Abstract— A vector-valued model-based cumulative sum
(CUSUM) procedure is proposed for identifying falsified sensor
measurements. To fulfill a desired detection performance, given
the system dynamics, we derive tools for tuning the CUSUM
procedure. We characterize the state degradation that a stealthy
attacker can induce to the system while remaining undetected
by the detection procedure. We quantify the advantage of using
a dynamic detector (CUSUM), which leverages the history of
the state, over a static detector (chi-squared) which uses a single
measurement at a time. Simulation experiments are presented
to illustrate the performance of the detection scheme.

I. INTRODUCTION

During the past half-century, scientific and technological
advances have greatly improved the performance of con-
trol systems. From heating/cooling devices in our homes,
to cruise-control in our cars, to robotics in manufacturing
centers. However, these new technologies have also led to
vulnerabilities of some our most critical infrastructures -
e.g., power, water, transportation. Advances in communi-
cation and computing power have given rise to adversaries
with enhanced and adaptive capabilities. Depending on their
resources, attackers may deteriorate the functionality of
systems while remaining undetected. Therefore, designing
efficient attack detection schemes and attack-robust control
systems is of key importance for guaranteeing the safety and
proper operation of critical systems. Tools from sequential
analysis and fault detection have to be adapted to deal with
the systematic, strategic, and persistent nature of attacks.
These new challenges have attracted the attention of many
researchers in the control and computer science communities
[1]-[7].

Most of the current work on security of control systems
has focused on static detection procedures (either bad-data
or chi-squared detectors), which identify anomalies based
on a single measurement at a time [2]-[4]. Nevertheless, a
complete and clear characterization of how features of the
system (e.g., system matrices, control/estimator gains, noise,
sampling) affect the performance of the detector (e.g., state
deviation, false alarm rate) is not completely addressed in
the literature. There are some papers in this direction already.
For instance, in [5],[6], the authors relate detector properties
to estimation errors for a class of scalar linear stochastic
systems. They quantify how much the attacker can degrade
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the estimate of the state while remaining undetected. In the
same spirit, the authors in [1],[2] study how the attacker
propagates its effect through the control structure to degrade
the system dynamics while remaining stealthy with respect
to the detection mechanism. There is only a small amount of
literature considering the use of dynamic change detection
procedures such as the Sequential Probability Ratio Test
(SPRT) or the Cumulative Sum (CUSUM) [8], which employ
measurement history, in the context of security of Cyber-
Physical Systems (CPS) [7]. Dynamic detectors present an
appealing alternative to the aforementioned static procedures.
Using measurement history provides extra degrees of free-
dom for improving the performance of our attack detection
strategies; in particular, against low amplitude persistent
attacks.

This paper addresses the problem of detecting compro-
mised sensors in Linear Time-Invariant (LTI) systems sub-
ject to sensor/actuator noise, using chi-squared static and
CUSUM dynamic detectors. Standard Kalman filters are pro-
posed to estimate the state of the physical process; then, these
estimates are used to construct distance measures between
sensor measurements and the estimated outputs coming from
the Kalman filter. These distance measures are accumulated
such that if its accumulation is more than expected an alarm
is triggered indicating a possible compromised sensor. This
is the well-known change detection procedure referred to
as CUSUM. In this manuscript, we propose a quadratic
form in the residual variables (the differences between sensor
observations and estimated outputs) as distance measure. We
provide systematic tools for tuning the CUSUM procedure
given the system dynamics, the Kalman filter, the stochastic
properties of the distance measure, and a desired false alarm
rate. In particular, sufficient conditions for mean square
boundedness of the CUSUM sequence are derived when it is
driven by the quadratic form of the residuals. Then, using a
Markov a chain approximation of the CUSUM sequence, we
give a procedure for selecting the decision threshold such that
a desired false alarm rate is satisfied. For a class of stealthy
attacks, we characterize the impact of the attack sequence
on the system dynamics when the vector-valued CUSUM is
deployed for attack detection. We use the well-known chi-
squared procedure (which is a quadratic distance measure
compared to a threshold) as a benchmark to compare the
performance of the CUSUM. In order to do so, we also
provide tools for tuning the chi-squared procedure to achieve
a desired false alarm rate.

In our previous work [9], we have started analyzing these
ideas for the sensor-wise case, i.e., when there is dedicated
detector on each sensor (or on any sensor we want to include



Fig. 1. Cyber-physical system under attacks on the sensor measurements.

in the detection scheme). We have compared the CUSUM
performance against scalar bad-data procedures. Here, we
present a generalization to a vector-valued detection scheme
with an aggregate detector. We also compare the performance
of the CUSUM against vector-valued chi-squared detectors.
While on the surface these papers have similar structure and
build on a common set of fundamental results, they represent
different original and self-contained results. In particular, the
proofs of these results (the full exposition of which is limited
due to space) require different tools to tackle.

II. SYSTEM DESCRIPTION & ATTACK DETECTION

We study LTI stochastic systems of the form:{
x(tk+1) = Fx(tk) +Gu(tk) + v(tk),

y(tk) = Cx(tk) + η(tk),
(1)

with sampling time-instants tk, k ∈ N, state x ∈ Rn,
measured output y ∈ Rm, control input u ∈ Rl, matrices F ,
G, and C of appropriate dimensions, and i.i.d. multivariate
zero-mean Gaussian noises v ∈ Rn and η ∈ Rm with
covariance matrices R1 ∈ Rn×n, R1 ≥ 0 and R2 ∈ Rm×m,
R2 ≥ 0, respectively. The initial state x(t1) is assumed to be
a zero-mean Gaussian random vector with covariance matrix
R0 ∈ Rn×n, R0 ≥ 0. The processes v(tk), k ∈ N and
η(tk), k ∈ N and the initial condition x(t1) are mutually
independent. At the time-instants tk, k ∈ N, the output
of the process y(tk) is sampled and transmitted over a
communication channel. The received output ȳ(tk) is used
to compute control actions u(tk) which are sent back to the
process, see Fig. 1. The complete control-loop is assumed
to be done instantaneously, i.e., the sampling, transmission,
and arrival time-instants are supposed to be equal. In this
paper, we focus on attacks on sensor measurements. That
is, in between transmission and reception of sensor data, an
attacker may replace the signals coming from the sensors
to the controller, see Fig. 1. After each transmission and
reception, the attacked output ȳ takes the form:

ȳ(tk) := y(tk) + δ(tk) = Cx(tk) + η(tk) + δ(tk), (2)
where δ(tk) ∈ Rm denotes additive sensor attacks. Define
xk := x(tk), uk := u(tk), vk := v(tk), ȳk := ȳ(tk), ηk :=
η(tk), and δk := δ(tk). Using this notation, the attacked
system is written as follows{

xk+1 = Fxk +Guk + vk,
ȳk = Cxk + ηk + δk.

(3)

A. Kalman Filter

In order to estimate the state of the process, an estimator
with the following structure is proposed:

x̂k+1 = Fx̂k +Guk + Lk

(
ȳk − Cx̂k

)
, (4)

with estimated state x̂k ∈ Rn, x̂1 = E[x(t1)], where E[ · ]
denotes expectation, and gain matrix Lk ∈ Rn×m. Define
the estimation error ek := xk − x̂k. In the Kalman filter,
the matrix Lk is designed to minimize the covariance matrix
Pk := E[eke

T
k ] (in the absence of attacks). If the pair (F,C)

is detectable, the covariance matrix converges to steady state
in the sense that limk→∞ Pk = P exists [10]. We assume that
the system has reached steady state before an attack occurs.
Then, the estimation of the random sequence xk, k ∈ N

can be obtained by the estimator (4) with Pk and Lk in
steady state. It can be verified that, if R2+CPCT is positive
definite, the following estimator gain

Lk = L :=
(
FPCT

)(
R2 + CPCT

)−1
, (5)

leads to the minimal steady state covariance matrix P , with
P given by the solution of the algebraic Riccati equation:
FPFT − P +R1 = FPCT (R2 + CPCT )−1CPFT . (6)

The reconstruction method given by (4)-(6) is referred to as
the steady state Kalman Filter, cf. [10].

B. Residuals and Hypothesis Testing

The main idea behind fault detection theory is the use of
an estimator to forecast the evolution of the system. If the
difference between what it is measured and the estimation is
larger than expected, there may be a fault in or attack on the
system. In this paper, we use the steady state Kalman filter
introduced in the previous section as our estimator. Define
the residual sequence rk, k ∈ N as

rk := ȳk − Cx̂k = Cek + ηk + δk, (7)
which evolves according to the following difference equation{

ek+1 =
(
F − LC

)
ek − Lηk − Lδk + vk,

rk = Cek + ηk + δk.
(8)

If there are no attacks, the mean of the residual is
E[rk+1] = CE[ek+1] + E[ηk+1] = 0m×1, (9)

and the covariance is
Σ := E[rk+1r

T
k+1] = CPCT +R2. (10)

It is assumed that Σ ∈ Rm×m is positive definite (a standard
assumption that guarantees that the Kalman filter converges).
For this residual, we identify two hypothesis to be tested: H0

the normal mode (no attacks) and H1 the faulty mode (with
attacks). Then, we have

H0 :

{
E[rk] = 0m×1,

E[rkr
T
k ] = Σ,

H1 :

{
E[rk] ̸= 0m×1,

E[rkr
T
k ] ̸= Σ,

where 0m×1 denotes an m-dimensional vector composed
of only zeros. In this manuscript, we mainly focus on the
CUSUM procedure [11] for examining the residual and
subsequently detecting attacks. However, for comparison, we
also present results about the so-called chi-squared change
detection procedure (which is widely used in the literature).



C. Distance Measures and Cumulative Sum (CUSUM)

The input to the CUSUM procedure is a distance measure,
i.e., a measure of how deviated the estimator is from the
actual system. In this work, we assume there is a vector-
valued detection scheme with an aggregate detector, i.e.,
there is a single detector monitoring the complete vector
of residuals. We propose the following quadratic form as
distance measure:

zk := rTk Σ
−1rk. (11)

Note that, if there are no attacks, rk ∼ N (0,Σ). Hence, δk =
0 implies that zk follows a χ2-distribution with m degrees
of freedom [12] (note that m is the dimension of rk) and

E[zk] = m and var[zk ] = 2m. (12)

For a given distance measure zk ∈ R, the CUSUM of Page
[11] is written as:

CUSUM: S1 = 0,
Sk = max(0, Sk−1 + zk − b), if Sk−1 ≤ τ,

Sk = 0 and k̃ = k − 1, if Sk−1 > τ.
(13)

Design parameters: bias b ∈ R>0 and threshold τ ∈ R>0.
Output: alarm time(s) k̃.

The idea is that the test sequence Sk accumulates the distance
measure zk and alarms are triggered when Sk exceeds the
threshold τ . The test is reset to zero each time Sk becomes
negative or larger than τ . If zk is an independent nonnegative
sequence (which is our case) and b is not sufficiently large,
the CUSUM sequence Sk grows unbounded until the thres-
hold τ is reached, no matter how large τ is set. In order to
prevent these drifts, inevitably yielding false alarms, the bias
b must be selected properly based on the properties of the
distance measure. Once the the bias is chosen, the threshold
τ must be selected to fulfill a required false alarm rate A∗

(see Section III-B).

III. CUSUM-TUNING

We have already mentioned that too small a bias can lead
to unbounded growth of the CUSUM test sequence. At the
same time, too large a bias may hide the effect of the attacker
and provide more opportunity for sensor attacks to influence
the system while still remaining undetected. In what follows,
we provide tools for selecting these parameters given the
statistical properties of the distance measure zk introduced
in (12). First, we provide sufficient conditions on the bias
b such that, in the absence of attacks, the sequence Sk of
the CUSUM remains bounded (independent of the reset due
to τ ) in mean-squared sense. This is important because it
avoids false alarms due to the divergence of Sk. Secondly,
we characterize the false alarm rate of the CUSUM in terms
of b and τ given a desired false alarm rate.

A. Boundedness

First, we introduce the following concept of boundedness
of stochastic processes, cf. [13], followed by sufficient con-

ditions for boundedness of the CUSUM sequence. Let Eb[a]
denote the conditional expectation of a given b.

Definition 1 The sequence Sk, k ∈ N is said to be bounded
in mean square, if

sup
k∈N

ES1

[
S2
k

]
< ∞,

is satisfied, i.e., the second moment of Sk is finite.

Theorem 1 Consider the discrete-time process (3) and the
steady state Kalman filter (4)-(6). Assume that there are no
attacks to the system, i.e., δk = 0. Let the CUSUM (13)
with bias b ∈ R>0 and threshold τ ∈ R>0 be driven by
the distance measure zk = rTk Σ

−1rk, k ∈ N with residual
sequence rk ∼ N (0,Σ). Then, for b > b̄ := m, the CUSUM
sequence Sk, k ∈ N is bounded in mean square sense
independent of the threshold τ .

The proof is omitted here due to the page limit. The result
stated in Theorem 1 implies that for b > b̄, the second
moment (and hence the first) of the sequence Sk, k ∈ N

does not diverge. Consequently, we avoid false alarms due
to intrinsic unboundedness of the CUSUM sequence. Note
that if the bias b is selected greater than but close to b̄, small
changes in the distance measure zk would lead to divergence
of Sk. Therefore, the smaller the bias, the higher the sensi-
tivity against changes in (or uncertain characterization of)
the residual signals.

B. False Alarms

Once the bias is selected such that boundedness of E[S2
k]

is guaranteed, the next step is to select the threshold τ to
fulfill a desired false alarm rate. The occurrence of an alarm
in the CUSUM when there are no attacks to the CPS is
referred to as a false alarm. Let A ∈ (0, 1) denote the false
alarm rate for the CUSUM procedure defined as the expected
proportion of observations which are false alarms [14],[15].
Define the run length K of the CUSUM (13) as the number
of iterations needed such that SK > τ (with no attacks), i.e.,

K := inf{k ≥ 1 : Sk > τ}. (14)
The expected value of K is known in the literature as the
Average Run Length (ARL). The ARL is related to A by

A = 1/ARL, (15)
see [14],[15] for details. Then, for a given b > b̄, the problem
of selecting τ to satisfy a desired false alarm rate A∗ can be
reformulated as the problem of selecting τ such that

ARL = 1/A∗. (16)
To determine a pair (b, τ) satisfying (16), an expression
for the ARL = E[K] is required but, in general, its exact
evaluation is analytically intractable [16]. The problem of
approximating the ARL for CUSUM procedures has been
addressed by many authors during the last decades [17]-
[19]. Particularly, accurate numerical methods have been
proposed by, for instance, [18]-[19]. These methods rely
on two main techniques, namely Markov chain and integral
equation approaches. Both methods give accurate predictions
of the ARL (see [18] for a comparison); however, we find



the Markov chain approach more constructive and easier to
implement. In particular, in this manuscript, we use the result
of Evans and Brook [20]. With this result, we outline a
procedure for selecting the threshold τ given the bias b and
a required false alarm rate A∗.

For b > b̄ and τ ∈ R>0, consider the sequence Sk

generated by the CUSUM procedure (13) driven by the
distance measure zk = rTk Σ

−1rk, rk ∼ N (0,Σ). Given the
recursive nature of the CUSUM procedure and independence
of rk the sequence Sk forms a Markov chain taking values in
R≥0 [21]. By discretizing the probability distribution of the
distance measure, it is possible to subdivide the CUSUM
sequence Sk into a finite set of partitions. The idea is
to approximate the continuous scheme by a Markov chain
having N+1 states labeled as {E0, E1, . . . , EN}, where EN

is absorbing. Then, the probability that the chain remains in
the same state at the next step should correspond to the case
when Sk does not change in value by more than a small
amount, say 1

2∆S , i.e., the next distance measure zk does
not differ from the bias b by more than 1

2∆S . The constant
∆S determines the width of the grouping interval involved
in the discretization of the probability distribution of zk. The
interval width 1

2∆S must be selected such that the probability
of jumping from Ej , j ∈ {0, . . . , N − 1} to the absorbing
state EN is approximately equal to the probability that the
CUSUM sequence Sk jumps beyond the threshold τ from a
position Sk−1 ∈ [0, τ) which corresponds approximately to
the state Ej . This requirement is satisfied by taking

∆S :=
2τ

2N − 1
, (17)

see [20] for details. Then, the transition probabilities from
a starting state Ej , j = 0, . . . , N − 1, can be determined
from the probability distribution of zk − b = rTk Σ

−1rk − b,
as follows:

pr(Ej → E0) = pr(zk − b ≤ −j∆S +
1

2
∆S),

pr(Ej → EN ) = pr((N − j)∆S − 1

2
∆S < zk − b),

pr(Ej → Eν) = pr(zk − b ≤ (ν − j)∆S +
1

2
∆S)

− pr(zk − b < (ν − j)∆S − 1

2
∆S).

Note that pr(E0 → EN ) = pr(zk − b > τ). The system
forms a Markov chain whose transition matrix can be
constructed from the probability distribution of zk, given
b and τ . Define Tχ := pr(zk − b ≤ χ∆S + 1

2∆S) and
pχ := pr(χ∆S − 1

2∆S < zk − b ≤ χ∆S + 1
2∆S).

Then, the Markov transition matrix P ∈ R(N+1)×(N+1) is:

P :=



T0 p1 p2 . . . pN−1 1− TN−1

T−1 p0 p1 . . . pN−2 1− TN−2

...
...

...
...

...
T−j p1−j p2−j . . . pN−1−j 1− TN−1−j

...
...

...
...

...
T1−N p2−N p3−N . . . p0 1− T0

0 0 0 . . . 0 1


. (18)

To compute the transition probabilities of P , we need the
Cumulative Distribution Function (CDF) of the shifted dis-
tance measure zk − b = rTk Σ

−1rk − b. If there are no

attacks, rk ∼ N (0,Σ); therefore zk − b follows a shifted
χ2-distribution with CDF given by

Fzk−b(x) :=

{
P
(
m
2 ,

x+b
2

)
, for x ≥ −b,

0, for x < −b,
(19)

where P(·, ·) denotes the regularized lower incomplete
gamma function. Then, the entries of P are given by:{

pχ = Fzk−b(χ∆S + ∆S

2 )− Fzk−b(χ∆S − ∆S

2 ),

Tχ = Fzk−b

(
χ∆S + ∆S

2

)
.

(20)

Next, having defined the transition matrix P of the approxi-
mated Markov chain, we can compute an approximation Ã
of the false alarm rate A based on the result in [20], equation
(15), and (17)-(20). Let 1N×1 denote an N -dimensional
vector composed of only ones and col(µ1, . . . , µN ) stand
for the column vector composed of the elements µ1, ..., µN .

Theorem 2 Assume that there are no attacks to the system
and let the CUSUM (13) with bias b > b̄ = m and threshold
τ ∈ R>0 be driven by the distance measure zk = rTk Σ

−1rk,
k ∈ N with residual sequence rk ∼ N (0,Σ). For a finite
number of partitions N ∈ N, define R ∈ RN×N as the ma-
trix obtained from the transition matrix P ∈ R(N+1)×(N+1)

(17)-(20) by removing its last row and column and

µ := (IN −R)−11N×1 = col(µ1, . . . , µN ). (21)
Then, the false alarm rate A = 1/ARL is approximately
given by Ã := µ−1

1 . Moreover, as N → ∞, Ã → A, i.e.,
limN→∞ Ã = A.

The proof is omitted here due to the page limit.

Remark 1 By construction, the entries of R are non-
negative and its row sums are less than one. Therefore, by
Gershgorin circle theorem, ρ(R) < 1, where ρ(·) denotes
spectral radius; therefore, the matrix (IN −R) is invertible.

Remark 2 Theorem 2 provides a tool for approximating
the false alarm rate A of the CUSUM procedure for
given bias b and threshold τ . In particular, for a given
b > b̄, it provides a map S : R>0 → (0, 1) from the
threshold τ to the approximated false alarm rate Ã, i.e.,
τ 7→ S(τ), Ã = S(τ). Given that Fzk−b(z) is a continuous
function for all z ∈ R, it can be proved that S is a
continuous map for all τ ∈ R>0. Then, using Theorem 2,
simple bisection methods can be employed to determine the
threshold τ = τ∗ ∈ R>0 required to satisfy a desired false
alarm rate A∗ for given b > b̄.

IV. CHI-SQUARED TUNING

In this work, we use the chi-squared approach as a
benchmark to compare the performance of the CUSUM.
Consider again the residual rk and its covariance matrix Σ.

Chi-squared procedure:
If zk = rTk Σ

−1rk > α, k̃ = k. (22)
Design parameter: threshold α ∈ R>0.
Output: alarm time(s) k̃.



The idea is that alarms are triggered if zk exceeds the
threshold α. Similar to the CUSUM procedure, the parameter
α is selected to satisfy a required false alarm rate A∗.

Theorem 3 Assume that there are no attacks to the system
and consider the chi-squared procedure (22) with threshold
α ∈ R>0, rk ∼ N (0,Σ). Let α = α∗ := 2P−1(m2 , 1 −
A∗), where P−1(·, ·) denotes the inverse regularized lower
incomplete gamma function, then A = A∗.

V. STATE DEGRADATION

In this section, we assess the performance of the CUSUM
procedure by quantifying the effect of the attack sequence
δk on the state of the system when the CUSUM is used to
detect anomalies. In particular, we characterize, for a class
of stealthy attacks, the largest deviation of the expectation
of the state due to the attack sequence. More precisely,
we derive upper bounds on the expected value of the state
given the system dynamics, the control strategy, the attack
sequence, and the parameters of the CUSUM. Also, for the
same class of attacks, we quantify the largest deviation of the
expectation of the state when using the chi-squared procedure
and then compare it with the one obtained with the CUSUM.

A. Feedback Controller

Consider dynamic output feedback controllers of the form:
uk := Kx̂k, (23)

where x̂k ∈ Rn is the state of the Kalman filter (4)-(6) and
K ∈ Rl×n denotes the control matrix. Assume that the pair
(F,G) is stabilizable, then the matrix K can be selected
such that (F + GK) is Schur. The closed-loop system (3),
(4)-(6),(23) can be written in terms of the estimation error
ek = xk − x̂k as follows{

xk+1 = (F +GK)xk −GKek + vk,

ek+1 =
(
F − LC

)
ek − Lδk − Lηk + vk.

(24)

Note that the attack sequence δk directly affects the estima-
tion error dynamics, whereas the effect of the attack on the
system dynamics is through the interconnection term GKek.

B. Stealthy Attacks

Here, we quantify the damage that the attacker may induce
to the system in the worst-case scenario while remaining
undetected by the detection procedure. To this end, it is
assumed that the attacker has perfect knowledge of the
system dynamics, the Kalman Filter, control inputs, mea-
surements, and detection procedure (either CUSUM or chi-
squared). It is further assumed that all the sensors can be
compromised by the attacker at each time step. In particular,
we are interested in attack sequences δk that can induce
changes in the system dynamics while remaining undetected
by the detection procedure. This class of attacks is known in
the literature as stealthy attacks [7], [2], [1]. First, consider
the chi-squared procedure (22) and write zk in terms of the
estimation error ek, then:

zk = (Cek + ηk + δk)
TΣ−1(Cek + ηk + δk). (25)

By assumption, the attacker has access to yk = Cyk + ηk.
Moreover, given its perfect knowledge of the Kalman filter,

the adversary can compute the estimated output Cx̂k and
then construct Cek + ηk. For a given chi-squared threshold
α, define ᾱ := {ᾱ ∈ Rm|ᾱT ᾱ = α}; take, for instance,
ᾱ = col(

√
α
m ,

√
α
m , . . . ,

√
α
m ) or ᾱ = col(

√
α, 0, . . . , 0).

Then, it follows that
δk = −Cek − ηk +Σ

1
2 ᾱ → zk = α, (26)

where Σ
1
2 denotes the symmetric squared root matrix of Σ,

is a feasible attack sequence given the capabilities of the
attacker. These attacks maximize the damage to the CPS by
immediately saturating and maintaining zk at the threshold
α. The expectation of the closed-loop system under the attack
(26) is given by{

E[xk+1] = (F +GK)E[xk]−GKE[ek],

E[ek+1] = FE[ek]− LΣ
1
2 ᾱ.

(27)

Note that if ρ[F ] > 1, then |E[ek]|, and also |E[xk]| due
to the interconnection, diverge to infinity as k → ∞ [10].
That is, the attack sequence (26) destabilizes the system
if ρ[F ] > 1. If ρ[F ] ≤ 1, then |E[ek]|, may or may not
diverge to infinity depending on algebraic and geometric
multiplicities of the eigenvalues with unit modulus of F
(a known fact from stability of LTI systems [10]).

Proposition 1 Consider the process (3), the Kalman filter
(4)-(6), the controller (23), and the chi-squared proce-
dure (22). Let the sensors be attacked by the stealthy
attack sequence (26). Then, if ρ[F ] < 1, it is satisfied that
limk→∞ |E[xk]| = γχ2 , where

γχ2 :=
∥∥∥(I − F −GK)−1GK(I − F )−1LΣ

1
2 ᾱ

∥∥∥ .
Next, consider the CUSUM procedure and write (13) in
terms of the estimation error ek:
Sk = max

(
0, Sk−1 +

(
Σ− 1

2 (Cek + ηk + δk)
)2 − b

)
, (28)

if Sk−1 ≤ τ ; and Sk = 0, if Sk−1 > τ . As with the
chi-squared procedure, we look for attack sequences that
immediately saturate and then maintain the CUSUM statistic
at the threshold Sk = τ . Assume that the attack starts at some
k = k∗ ≥ 2 and Sk∗−1 ≤ τ , i.e., the attack does not start
immediately after a false alarm. For given threshold τ and
bias b, define τ̄ := {τ̄ ∈ Rm|τ̄T τ̄ = τ + b − Sk−1} and
b̃ := {b̃ ∈ Rm|b̃T b̃ = b}. Consider the attack sequence:

δk =

{
−Cek − ηk +Σ

1
2 τ̄ , k = k∗,

−Cek − ηk +Σ
1
2 b̃, k > k∗.

(29)

Note that the attacker can only induce this sequence by
knowing Sk∗−1 exactly, i.e., the value of the CUSUM
sequence one step before the attack. This is a strong assump-
tion since it represents a real-time quantity that is not
communicated over the communication channel. Even if the
opponent has access to the parameters of the CUSUM, (b, τ),
given the stochastic nature of the residuals, the attacker
would need to know the complete history of observations
(from when the CUSUM was started) to be able to recon-
struct Sk∗−1 from data. This is an inherent security advantage
in favor of the CUSUM over static detectors like the bad-data
or chi-squared. Nevertheless, for evaluating the worst case
scenario, we assume that the attacker has access to Sk∗−1.



Without loss of generality, assume k∗ = 2. By construction,
E[xi] = E[ei] = 0, i = 1, 2; then, the expectation of closed-
loop system under the attack sequence (29) is written as:
E[x3] = 0, E[e3] = −LΣ

1
2 τ̄ , and{

E[xk+1] = (F +GK)E[xk]−GKE[ek],

E[ek+1] = FE[ek]− LΣ
1
2 b̃,

(30)

for k > k∗ = 2.

Proposition 2 Consider the process (3), the Kalman filter
(4)-(6), the controller (23), and the CUSUM proce-
dure (13). Let the sensors be attacked by the stealthy
attack sequence (29). Then, if ρ[F ] < 1, it is satisfied that
limk→∞ |E[xk]| = γCS, where

γCS :=
∥∥∥(I − F −GK)−1GK(I − F )−1LΣ

1
2 b̃
∥∥∥ .

The proofs of both Proposition 1 and Proposition 2 are
omitted here due to the page limit.

C. Detector Comparison
For stealthy attacks, we have derived upper bounds on

the steady state value of |E[xk]| for both the chi-squared
and CUSUM procedures provided that ρ(F ) < 1. There are
some aspects of these bounds to be highlighted. Note that the
τ -dependent term in the attack sequence (29) does not affect
|E[xk]| in steady state. This is because Σ

1
2 τ̄ is only induced

at k = k∗; it follows that, since ρ(F ) < 1, the contribution
of τ̄ to E[xk] exponentially decreases to zero as k → ∞.

For comparison, let b̃ ∈ Im[ᾱ], i.e., b̃ = cᾱ for some
c ∈ R. Then, γCS = |c|γχ2 ; therefore, γCS < γχ2 , if and only
if |c| < 1. Moreover, by construction, b̃ = cᾱ → b̃T b̃ = b =
c2ᾱT ᾱ = c2α; hence, c = ±

√
b/α and |c| < 1 ↔ b < α.

That is, if b < α, under the same class of stealthy attacks, the
CUSUM procedure leads to smaller steady state deviations
of |E[xk]| than the chi-squared procedure.

In general, to increase the chances of attack detection, it
is desired to select b as close as possible to b̄ in Theorem 1.
It follows that b ≈ b̄ = m. On the other hand, according to
Theorem 3, α must be selected as α = α∗ = 2P−1(m2 , 1 −
A∗) to fulfill a desired false alarm rate A∗. In this case,
we want to select A∗ close to zero, such that there are only
a few false alarms. Let A∗ ∈ [0.01, 0.1] and m = 2, i.e.,
false alarms between 1% and 10% and two dimensional
outputs. Then, α = 2P−1(m2 , 1 − A∗) ∈ [4.60, 9.21] and,
for b ≈ b̄ = 2, 0.45 ⪅ |c| ⪅ 0.65. This implies that for the
same class of attacks and A∗ ∈ [0.01, 0.1], the chi-squared
procedure leads to around two times larger upper bounds than
the CUSUM. Actually, for having α = b → |c| = 1, it is
necessary to allow for a rate of A∗ = 0.63, which is high for
practical purposes. For the CUSUM procedure, the threshold
τ is selected to fulfill the desired A∗. Given that there are
no exact closed-form expressions to relate τ and A∗ (we
only have a numeric approximation in Theorem 2), it is
not possible to tell exactly how large τ needs be to satisfy
A∗. However, as already mentioned, the contribution of τ̄ to
E[xk] vanishes exponentially, i.e., independent of how large
τ is, its contribution to the upper bound of |E[xk]| is zero
in steady state.

Fig. 2. (a) Cusum evolution for different values of bias b. (b) Degradation
of |E[xk]| due to stealthy attacks. Attacks start at k = 5000.

VI. SIMULATION EXPERIMENTS

Consider the closed-loop system (3),(4)-(6),(23) with
matrices as given in (31). First, assume no-attacks, i.e.,
δk = 0, and consider the CUSUM procedure (13) with
distance measure zk = rTk Σ

−1rk and residual sequence (8).
According to Theorem 1, the bias b must be selected larger
than b̄ = m = 2 to ensure mean square boundedness of
Sk independent of the threshold τ . Figure 2a depicts the
evolution of the CUSUM for b ∈ {0.85b̄, 0.95b̄, 1.05b̄} and
k ∈ [1, 20000]. For the purpose of illustrating this unbounded
growth, we have omitted the reset procedure of the CUSUM.
Note that the bound for b is tight, small deviations from b̄
lead to (boundedness) unboundedness of Sk.

Next, for desired false alarm rates A∗ ∈
{0.25, 0.10, 0.02}, we compute the corresponding thresholds
τ = τ∗ using Theorem 2 and Remark 2. For these thresholds,
in Table 1, we present the actual false alarm rate A (obtained
by simulation) and the desired A∗. Note that the difference
between A and A∗ is less that 6% in all cases. It actually
seems that our thresholds lead to A < A∗; however, further
analysis is required to corroborate this relation.

Finally, in Fig. 2b, we present the evolution of |E[xk]|
when both the chi-squared and the CUSUM are deployed
for attack detection and the attack sequences δk are given by
the stealthy attacks introduced in (26) and (29), respectively,
with ᾱ =

√
αδ̄, b̃ =

√
bδ̄, τ̄ =

√
τ + b− Sk−1δ̄, and

δ̄ = col(1, 0, . . . , 0) ∈ Rm. For the CUSUM, we select
b = 1.15b̄ = 2.30 and τ = τ∗ = 2.7468 such that
A ≈ A∗ = 0.10 (see Table 1). Likewise, we select α = α∗ =
2P−1( 22 , 1−0.10) = 4.6051 such that, according to Theorem
3, A ≈ A∗ = 0.10. The attack is induced at k = 5 × 103.
Note that, as stated by Proposition 1 and Proposition 2,
given that ρ(F ) < 1, limk→∞ |E[xk]| = γCS = 0.4026 and
limk→∞ |E[xk]| = γχ2 = 0.5697. Moreover, as mentioned
in V-C, we expect that the CUSUM leads to a smaller
deviation on |E[xk]| because b < α and b̃ ∈ Im[ᾱ]. This
is what we see in Fig. 2.



VII. CONCLUSION

In this paper, for a class of discrete-time stochastic linear
systems, we have characterized a model-based CUSUM
procedure for identifying compromised sensors. In partic-
ular, Kalman filters have been proposed to estimate the
state of the physical process; then, these estimates have
been used to construct residual variables (between sensor
measurements and estimations) which drive the CUSUM
procedure. Using stability results for stochastic systems and

Markov chain approximations of the CUSUM sequence, we
derived systematic tools for tuning the CUSUM procedure
such that mean square boundedness of the CUSUM sequence
is guaranteed and the desired false alarm rate is fulfilled.
For a class of stealthy attacks, we have characterized the
performance of the proposed CUSUM procedure in terms of
the effect that the attack sequence can induce on the system
dynamics. Then, we have compared this performance against
the one obtained using chi-squared procedure.


F =

(
0.84 0.23

−0.47 0.12

)
, G =

(
0.07
0.23

)
, C =

(
1 0
1 1

)
, K =

(
−1.85 −0.96

)
, L =

(
0.25 0.17

−0.18 −0.07

)
,

R1 =

(
0.45 −0.11

−0.11 0.20

)
, R0 = R2 =

(
1 0
0 1

)
, Σ =

(
1.65 0.40
0.40 1.46

)
.

(31)

TABLE I
SIMULATION EXPERIMENTS. RESULTS OF THEOREM 2 AND REMARK 2.

A∗ = 0.25 A∗ = 0.10 A∗ = 0.02

b/b̄ τ∗ A (Sim.) τ∗ A (Sim.) τ∗ A (Sim.)

1.05 0.71 0.20 3.12 0.09 10.18 0.02
1.15 0.49 0.20 2.74 0.09 8.62 0.02
2.00 − − 0.61 0.09 4.18 0.02
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