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In our previous work, we have shown that the pseudospectral method is an effective and flexible com-
putation scheme for deriving pulses for optimal control of quantum systems. In practice, however,
quantum systems often exhibit variation in the parameters that characterize the system dynamics.
This leads us to consider the control of an ensemble (or continuum) of quantum systems indexed by
the system parameters that show variation. We cast the design of pulses as an optimal ensemble con-
trol problem and demonstrate a multidimensional pseudospectral method with several challenging
examples of both closed and open quantum systems from nuclear magnetic resonance spectroscopy
in liquid. We give particular attention to the ability to derive experimentally viable pulses of mini-
mum energy or duration. © 2011 American Institute of Physics. [doi:10.1063/1.3541253]

I. INTRODUCTION

The complexity inherent in pulse design for manipulating
quantum systems limits the analytic tractability of solutions
and motivates the study of computational methods to address
such problems. The necessity of numerical methods is even
more clear when parameter variations are incorporated into
modeling the system dynamics. These variations are preva-
lent in quantum systems in many forms and vital to consider
in order for theoretical prediction to match experimental out-
come. For example, systems in nuclear magnetic resonance
(NMR) spectroscopy and magnetic resonance imaging (MRI)
exhibit frequency (Larmor) dispersion, radio frequency (rf)
field inhomogeneity, as well as relaxation rate and spin cou-
pling variation. The inclusion of these perturbations requires
us to consider a pulse design problem for an ensemble of
quantum systems indexed by the physical parameters show-
ing variation.1

A variety of methods have been developed in the past
decades of research in pulse sequence design. Theoreti-
cal methods, such as composite pulses and hyperbolic se-
cant pulses,2–6 and custom numerical schemes7, 8 have been
used within the pulse design community. The well-known
Shinnar–Le Roux (SLR) algorithm in MRI designs frequency
selective pulses via polynomial approximation based on
small tip-angle approximations and spinor representation.9

Such specific methods, however, are not directly extendible
to include other variations. For example, designing extensions
to the SLR algorithm using Fourier synthesis techniques to
also compensate for rf inhomogeneity is both challenging and
involved.10 More recently pulse design has been approached
from a perspective of optimal control11–17 and gradient-type
methods have been successfully applied to systems with pa-
rameter variations.18 Although the optimal control formu-
lation is arbitrarily general, extensions of gradient methods
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require investment to recompute and reimplement evolution
propagators and objective gradients.

As experiments become more demanding in terms of
pulse design, compensating for additional variations will be
of particular interest and of increasing importance. The limi-
tations of current pulse design methods motivate the need for
a more flexible numerical optimization method, which can be
adopted quickly and used effectively. In our previous work,
we developed a pseudospectral method for solving idealized
pulse design problems of quantum systems that is straight-
forward to implement, relatively robust to local minima, and
exhibits fast convergence rates.19 Here, we describe a multidi-
mensional extension of the pseudospectral method to consider
more realistic pulse design problems for quantum systems ex-
hibiting parameter variation.

In Sec. II, we provide a general mathematical model for
pulse design and review the pseudospectral method as well
as introduce the ensemble extension. Section III illustrates
several of the key advantages and features of this newly de-
veloped method using canonical examples from NMR spec-
troscopy in liquids.

II. ENSEMBLE PSEUDOSPECTRAL METHOD FOR
PULSE DESIGN

We consider quantum dynamics under the Markovian ap-
proximation. In this case, the system state can be represented
by a vector x ∈ Rn , which evolves according to

ẋ =
[
Hd +

m∑
i=1

ui (t)Hi

]
x, (1)

where ui (t), i = 1, . . . , m are electromagnetic pulses and
Hd ,Hi ∈ Rn×n are square matrices representing the system
Hamiltonian.19

In practice the system Hamiltonian and, therefore, the
matrices Hd and Hi are not uniform across the systems of
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interest. Rather these quantities show variations in system
parameters, such as frequency, rf scaling, relaxation rates,
and spin coupling constants, due to different spatial locations
and chemical environments. Consolidating these individual
factors into a parameter vector s ∈ � ⊂ Rd , the correspond-
ing pulse design problem with parameter variation can be
written as a new class of optimal ensemble control problem,

min
∫

�

[
ϕ(T, x(T, s)) +

∫ T

0
L(x(t, s), u(t)) dt

]
ds,

s.t.
d

dt
x(t, s) =

[
Hd (s) +

m∑
i=1

ui (t)Hi (s)
]
x(t, s),

e(x(0, s), x(T, s)) = 0,

g(x(t, s), u(t)) ≤ 0, ∀ s ∈ �, t ∈ [0, T ], (2)

where ϕ and L are the real-valued functions denoting the ter-
minal (at the final time, T ) and running cost terms of the
general objective function, respectively, e represents endpoint
constraints, and g denotes path constraints. The general prob-
lem formulation in Eq. (2) is sufficient to describe an arbi-
trary practical pulse design problem with any number of con-
straints.

Solving this optimal control problem in the continuous-
time and parameter domain analytically is generally in-
tractable and we, therefore, look for computational methods
to derive numerical solutions. The remainder of this section
will present how the multidimensional pseudospectral method
effectively discretizes the optimal control problem in Eq. (2)
in both the time and parameter spaces. We first review the fun-
damental pseudospectral method without consideration for
parameter variation (see Ref. 19) and then subsequently ex-
tend these techniques to include optimal sampling in the en-
semble case.

A. Pseudospectral method

The overarching goal of the pseudospectral method is to
convert the continuous-time optimal control problem in Eq.
(2) into a constrained algebraic optimization problem, which
can be solved efficiently by existing nonlinear numerical op-
timization solvers. The pseudospectral method was originally
developed to solve problems in fluid dynamics, and since then
the related concepts have been successfully applied to many
areas of science and engineering.20–23 Pseudospectral dis-
cretization methods use orthogonal polynomial expansions to
approximate the states and controls of the system and thereby
inherit the spectral accuracy characteristic of such expansions
(the kth coefficient of the expansion decreases faster than any
inverse power of k).24 Using recursive properties unique to
certain classes of orthogonal polynomials, e.g., Legendre and
Chebyshev, derivatives of the states can again be expressed
in terms of the orthogonal polynomial expansions, making it
possible to accurately approximate the differential equation
that describes the dynamics with an algebraic relation im-
posed at a small number of discretization points. An appropri-
ate choice of these discretization points, or nodes, facilitates

the approximation of the states as well as ensures accurate
numerical integration.

We first transform the original problem from the time do-
main t ∈ [0, T ] to the rescaled domain t ∈ [−1, 1] on which
the orthogonal polynomials are defined. We then approximate
the states and controls by truncated N th-order expansions in
terms of Legendre orthogonal polynomials,

x(t) ≈ PN x(t) =
N∑

k=0

x̃k Lk(t), (3)

u(t) ≈ PN u(t) =
N∑

k=0

ũk Lk(t), (4)

where Lk(t) is the kth Legendre polynomial. Our choice to
use the Legendre polynomials dictates, we compute the inte-
gral term of the cost function using Legendre–Gauss–Lobatto
(LGL) quadrature, in which the integral is approximated by
a summation of the integrand evaluated at a specific set of
N + 1 nodes,

∫ 1

−1
f (t) dt ≈

N∑
i=0

f (ti )wi , wi =
∫ 1

−1
�i (t) dt, (5)

where f is a continuous function on [−1, 1], wi are dis-
crete weights, and �i (t) is the i th Lagrange polynomial, dis-
cussed below.25 The set of LGL nodes, �LGL = {ti : L̇ N (t)|ti
= 0, i = 1, . . . , N − 1}⋃{−1, 1}, is determined by the
derivative of the N th-order Legendre polynomial, L̇ N (t), and
the endpoints, −1 and 1.24 This choice of nodes makes the
integral approximation exact for f ∈ P2N−1, the set of poly-
nomials of degree 2N − 1 or less.

Although the Legendre expansions (3) and (4) provide an
accurate approximation of the states and controls, they do not
provide a straightforward way of evaluating these functions at
specific points, such as at the LGL nodes, which is required in
the quadrature approximation (5) of the integral terms of the
cost function. To overcome this, we approximate these Leg-
endre expansions with interpolating polynomials, which, by
definition, are equal to the Legendre expansions at the inter-
polation nodes. Because any interpolating polynomial can be
represented by Lagrange polynomials, we can approximate
the state and control as

PN x(t) ≈ IN x(t) =
N∑

k=0

x̄k�k(t), (6)

PN u(t) ≈ IN u(t) =
N∑

k=0

ūk�k(t), (7)

where the coefficients x̄k and ūk are defined by PN x(tk)
= IN x(tk) = x̄k and PN u(tk) = IN u(tk) = ūk , respectively,
because �k(ti ) = δki , where δki is the Kronecker delta
function.26 Using this second approximation, we can compute
the integrand of the cost function integral at the LGL nodes
and x̄k and ūk become the decision variables of the subsequent
discretized optimization problem.

The Lagrange polynomials with the choice of LGL
interpolating nodes can be expressed in terms of the
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Legendre polynomials, which is critical so that the pseu-
dospectral method inherits the special derivative and spectral
accuracy properties of the orthogonal polynomials despite us-
ing Lagrange interpolating polynomials. Given tk ∈ �LGL, we
can express the Lagrange polynomial as27

�k(t) = 1

N (N + 1)L N (tk)

(t2 − 1)L̇ N (t)

t − tk
. (8)

The derivative of IN x(t) in Eq. (6) at t j ∈ �LGL is then

d

dt
IN x(t j ) =

N∑
k=0

x̄k �̇k(t j ) =
N∑

k=0

D jk x̄k, (9)

where D is the constant (N + 1) × (N + 1) differentiation
matrix.28

B. Multidimensional extension & ensemble sampling

The optimal ensemble control problem in Eq. (2) in-
cludes another dimension of continuity from the parameter
domain, s ∈ � ⊂ Rd, which must be discretized (or sampled)
to be solved numerically. First consider the case of a single pa-
rameter variation, x(t, s) ∈ Rn, s ∈ [a, b] ⊂ R. The ensem-
ble extension of Eq. (6) using a two-dimensional interpolation
approximation is

x(t, s) ≈ IN×Ns x(t, s) =
N∑

k=0

x̄k(s)�k(t)

≈
N∑

k=0

(
Ns∑

r=0

x̄kr�r (s)

)
�k(t). (10)

The approximate derivative from Eq. (9) at the LGL nodes in
the respective t and s domains, ti ∈ �LGL and s j ∈ �LGL

Ns
, is

d

dt
IN×Ns x(ti , s j ) =

N∑
k=0

Dik

(
Ns∑

r=0

x̄kr�r (s j )

)

=
N∑

k=0

Dik x̄k j , (11)

where x̄k j = x(tk, s j ). In Eqs. (10) and (11), we have effec-
tively used a two-dimensional interpolating grid at the N + 1
and Ns + 1 LGL nodes in time and the parameter, respec-
tively. Using Eqs. (10) and (11) in conjunction with the LGL
quadrature rule in Eq. (5), we summarize the pseudospectral
discretization of the optimal ensemble control problem as

min
b − a

2

Ns∑
r=0

[
ϕ(T, x̄Nr ) + T

2

N∑
i=0

L(x̄ir , ūi )w
N
i

]
w Ns

r

s.t.
N∑

k=0

D jk x̄kr = T

2

[
Hr

d +
m∑

i=1

ūi jHr
i

]
x̄ jr ,

e(x̄0r , x̄Nr ) = 0,

g(x̄ jr , ū j ) ≤ 0, ∀ j ∈ {0, 1, . . . , N }
r ∈ {0, 1, . . . , Ns} , (12)

where Hr
d and Hr

i are n × n matrices representing the Hamil-
tonians with respect to the r th parameterized system and ūi j

is the value of the control function ui at the j th LGL node t j .
It is straightforward to extend this interpolating struc-

ture to accommodate parameter spaces of higher dimension,
s = (s1, s2, . . . , sd )′ ∈ � ⊂ Rd, d > 1. In this general case

x(t, s) ≈ IN×Ns1 ×···×Nsd
x(t, s) =

N∑
k=0

x̄k(s)�k(t)

=
N∑

k=0

Ns1∑
r1=0

· · ·
Nsd∑

rd=0

x̄kr1...rd �rd (sd ) · · · �r1 (s1)�k(t).

III. EXAMPLES IN NMR

We now illustrate several of the key properties of
the pseudospectral method for optimal control of quantum
ensembles through representative examples from NMR in
liquids. These systems exhibiting parameter variation form
challenging problems in quantum control. The ability to solve
them with the method presented here demonstrates it as a uni-
versal method for optimal pulse design. Specifically, we de-
sign rf pulses for systems modeled by the Bloch equations
with Larmor dispersion in the presence of rf inhomogeneity,
which has direct applications to NMR, MRI, quantum infor-
mation processing, and quantum optics. We also design pulses
that achieve optimal coherence transfer between a pair of het-
eronuclear spins with variation in relaxation rates and spin
coupling strengths. We first present the corresponding ensem-
ble systems and then highlight the advantages of the pseu-
dospectral method with simulation results.

A. Broadband pulse design in the presence of rf
inhomogeneity

The evolution of the bulk magnetization of a sample of
nuclear spins follows the Bloch equations.29 As pulse design
requirements are becoming increasingly more demanding, it
is necessary to consider effects, such as Larmor dispersion
and rf inhomogeneity, to ensure that theoretical prediction
matches experimental outcomes. Differences in the chemical
environment within the sample can cause variations in the
natural frequency and is observed at the macroscopic level as
Larmor dispersion. Equipment imperfection can cause signal
attenuation and results in amplitude scaling of the rf pulse
across the sample, called rf inhomogeneity. We formulate
robust pulse design compensating for Larmor dispersion and
rf inhomogeneity as the following optimal ensemble control
problem,

max J

s.t.
d

dt

⎡
⎣ x(t, ω, ε)

y(t, ω, ε)
z(t, ω, ε)

⎤
⎦=

⎡
⎣ 0 −ω εu

ω 0 −εv
−εu εv 0

⎤
⎦

⎡
⎣ x(t, ω, ε)

y(t, ω, ε)
z(t, ω, ε)

⎤
⎦ ,

[x(0, ω, ε) y(0, ω, ε) z(0, ω, ε)]′ = [0 0 1]′,

√
u2(t) + v2(t) ≤ A, ∀ t ∈ [0, T ], (13)
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where J is the chosen cost function, [x y z] is the state vector
representing the magnetization vector over time t ∈ [0, T ]
and parameterized by ω and ε, T is the terminal time (or
pulse duration), which can either be fixed or free to vary
within an interval [0, Tmax], ω ∈ [−B, B], B > 0 is the
offset frequency in the rotating frame with respect to the
central frequency, ε ∈ [1 − δ, 1 + δ], δ ∈ [0, 1] is the scaling
factor for the rf pulse; u and v are the components of the rf
pulse applied in the y and x axis, respectively, and A is the
maximum allowable amplitude.

A fundamental pulse in NMR experiments is a π/2 pulse,
which corresponds to a control law [u(t), v(t)] that rotates the
bulk magnetization vector initially from the equilibrium state
[0 0 1]′ onto the transverse plane, e.g., [1 0 0]′. Therefore, we
seek to design the single rf pulse [u(t), v(t)] that takes the con-
tinuum of spins with frequencies distributed in ω ∈ [−B, B]
and in the presence of different rf scalings, ε ∈ [1 − δ, 1 + δ],
from the z-axis to the x-axis. Such a pulse is called a broad-
band excitation pulse robust to rf inhomogeneity. To this end,
we select an appropriate objective to maximize the average
value of the x-component of the spin population magnetiza-
tion at the terminal time,

Javg = 1

4δB

∫ 1+δ

1−δ

∫ B

−B
x(T, ω, ε) dω dε. (14)

B. Robust coherence transfer

The coherence transfer between two spins is a fun-
damental step to multidimensional NMR spectroscopy. In
protein NMR spectroscopy, large transverse relaxation rates
can cause degraded sensitivity and thereby limits the size of
macromolecules available for study.15 We highlight several
important properties of the pseudospectral method through
pulse design of coupled heteronuclear spin systems with
and without cross-correlated relaxation effects. The single-
valued parameter systems of the following relaxation-
optimized pulse design problems have been studied
analytically and the corresponding optimal controls are
denoted ROPE in Ref. 30 and CROP in Ref. 31, respectively.
Although these analytic controls are only valid for the
single-valued parameter systems, i.e., without variation, we
use them as a benchmark to indicate the upper bound on
the expected coherence transfer of the ensemble quantum
systems. The following systems are described in detail in
Ref. 19, and we extend them now to consider the more
realistic case in which parameter variations in relaxation rates
and coupling constants are present.

1. Coherence transfer without cross-correlated
relaxation

We focus on large molecules in the so-called spin dif-
fusion limit, where longitudinal relaxation rates are neg-
ligible compared to transverse. The most important trans-
verse relaxation mechanisms are dipole–dipole (DD) and
chemical shift anisotropy (CSA) relaxation. We initially ig-
nore the cross-correlation rates caused by interference be-
tween DD and CSA relaxation. The optimal ensemble control

problem corresponding to designing a relaxation-optimized
pulse [u1(t), u2(t)] to maximize the coherence transfer in the
presence of variation in relaxation rates and spin coupling can
be formulated as

max Javg = 1

2δ(ξ2 − ξ1)

∫ 1+δ

1−δ

∫ ξ2

ξ1

x4(T, ξ, J ) dξ d J

s.t.

⎡
⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −u1 0 0
u1 −ξ −J 0
0 J −ξ −u2

0 0 u2 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ ,

x(0) = [1 0 0 0]′,√
u2

1(t) + u2
2(t) ≤ A, ∀t ∈ [0, T ], (15)

where Javg is the objective that maximizes the average final
value of x4 across the ensemble; xi = xi (t, ξ, J ) are expecta-
tion values of the spin operators,19 T is the final time, free to
vary as a decision variable, ξ ∈ [ξ1, ξ2] is the transverse au-
tocorrelated relaxation rate, J ∈ [1 − δ, 1 + δ], δ ∈ [0, 1], is
the scalar coupling constant, u1 and u2 are the applied con-
trols, and A is the maximum allowable amplitude.

2. Coherence transfer with cross-correlated relaxation

The more general case, in which cross-correlated relax-
ation is not neglected, leads to a modified formulation of the
problem. Here we consider variation in the relaxation rate
without variation in the spin coupling,

max Javg = 1

(ξ2 − ξ1)

∫ ξ2

ξ1

x6(T, ξa) dξa

s.t.

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −u1 u2 0 0 0
u1 −ξa 0 −J −ξc 0

−u2 0 −ξa −ξc J 0
0 J −ξc −ξa 0 −u2

0 −ξc −J 0 −ξa u1

0 0 0 u2 −u1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦
,

x(0) = [1 0 0 0 0 0]′,√
u2

1(t) + u2
2(t) ≤ A, ∀t ∈ [0, T ], (16)

where Javg is the objective that maximizes the average final
value of x6 across the ensemble; xi = xi (t, ξa) are expecta-
tion values of components of the spin operators, T is the final
time, free to vary as a decision variable, ξa ∈ [ξ1, ξ2] is the
autocorrelated relaxation rate and ξc is the cross-correlation
relaxation rate, J is the scalar coupling constant, u1 and u2

are the applied controls, and A is the maximum allowable
amplitude.19 To demonstrate, here we consider the case in
which ξc = 0.75ξa and J = 1.

C. Pseudospectral method features

In the following subsections, we show that the pseu-
dospectral method finds effective solutions to the pulse
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design problems listed above and, for problems in Eqs. (15)
and (16), finds pulses that achieve robust coherence transfer
near the analytic upper bound. Note that the features of the
pseudospectral method described below are general to the
method itself and not related to the specific system to which
it is applied. We highlight these key attributes using the prob-
lems above and motivate why this is a universal method for
deriving experimentally viable pulses for quantum systems.

1. Cost function flexibility

Within the scope of an optimal control problem, the
selection of an appropriate cost function is particularly
important. In addition, there are often different choices for
the objective associated with the same goal. For example, in
the Bloch system consider the cost functional that minimizes
the error between a desired target, xd (ω, ε), and the terminal
state value, i.e., min Jerr,

Jerr = 1

4δB

∫ 1+δ

1−δ

∫ B

−B
|xd (ω, ε) − x(T, ω, ε)| dω dε. (17)

While minimizing Eq. (17) and maximizing Eq. (14)
appear to imply the same optimization target when xd (ω, ε)
= 1, in practice the numerical properties of these two cost
functions causes solvers to deal with these differently. More-
over, there are reasons to consider several optimization goals
and, therefore, a number of cost function choices. For ex-
ample, it can be of interest to develop minimum-energy
or minimum-time pulses. A combination of these objective
choices can provide a tradeoff between their respective ad-
vantages.

A broadband π/2 pulse [see problem (13)] derived by
the multidimensional pseudospectral method with J = Javg,
A = 20 kHz, B = 20 kHz, δ = 0.1, and T = 100 μs is shown
in Fig. 1. In implementation, the physical units of the sys-
tems are normalized to dimensionless parameters. For the
Bloch system, we normalize by the maximum allowable am-
plitude, A, i.e., Ã = 1, B̃ = B/A, and T̃ = T A × 2π (2π ac-
counts for converting units between Hz and radians/s). This
normalized broadband π/2 pulse compensates for the off-
set [−1, 1] and 10% rf inhomogeneity with maximum allow-
able amplitude A = 1 and duration T = 4π . Normalizing in
this way leads to a more general formulation as the pulse
in Fig. 1 can be scaled to any chosen maximum allowable
amplitude.

Figure 2 shows a solution of the normalized Bloch system
with a wider bandwidth [−1.5, 1.5] without rf inhomogeneity
corresponding to J = Javg − 0.5JE, where the second term
serves to minimize the energy of the controls normalized by
the maximum allowed energy

JE = 1

A2T

∫ T

0
u2(t) + v2(t) dt. (18)

2. Smoothing

Due to the use of polynomial approximation, the pseu-
dospectral method naturally finds continuous and smooth so-
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FIG. 1. The optimal ensemble pulse (a), shown as x and y rf components
(conventionally u = B1y and v = B1x ), is robust to frequency variation on
the interval ω ∈ [−20, 20] kHz and rf scaling on the interval ε ∈ [0.9, 1.1].
The excitation profile (b), showing the terminal x-component of the magne-
tization spin vector, x(T, ω, ε), has an average value of 0.98. This optimal
ensemble pulse was developed by maximizing the excitation with N = 24,
Nω = 8, and Nε = 1.

lutions. Smooth pulses are of particular interest because such
controls are experimentally practical to implement on a scan-
ner without losses. In NMR experiments, although a desired
pulse may be intended to have an instantaneous step change,
the physical limitations of hardware cause latency that in turn

u
v

FIG. 2. The optimal ensemble pulse (a), shown as x and y rf components
(conventionally u = B1y and v = B1x ), is robust to frequency variation on
the interval ω ∈ [−1.5, 1.5]. The excitation profile (b), showing the terminal
x-component of the magnetization spin vector, x(T, ω, 1), has an average
value of 0.98. This optimal ensemble pulse was developed by maximizing
the excitation and minimizing energy with N = 28 and Nω = 24.
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causes differences between experimental results and predicted
outcomes. For example, the analytical ROPE solution to the
coherence transfer problem in Eq. (15) features impulses at
the beginning and end as well as sharp peaks in the mid-
dle, however, the pseudospectral method has been used to
find smooth pulses that approximate the discontinuous ROPE
solutions.19, 30

Figure 3 illustrates smooth pseudospectral solutions to
the normalized coherence transfer problem in Eq. (15) with
ξ ∈ [0, 2], fixed J = 1 (no variation in spin coupling), and
amplitude bound A = 20. If we use the pseudospectral
method with cost Javg, we obtain the fluctuating pulse shown
in Fig. 3(a). If we use the same method with the hybrid cost
J = Javg − JE, we obtain the pulse shown in Fig. 3(b) with
less oscillation. Both of these pulses achieve a similar ensem-
ble performance and Fig. 3(c) depicts the coherence trans-
fer corresponding to the hybrid objective pulse in Fig. 3(b).
Including the minimum energy term in the objective yields
a significantly more implementable and physically intuitive
pulse. In most cases, there are a large (possibly uncountable)
number of feasible solutions that achieve a similar perfor-
mance, and it is experimentally advantageous to select from
this large number the one that also minimizes energy.

Figure 4 shows a solution to the problem posed
in Eq. (15) and corresponding coherence transfer for
the two-dimensional ensemble problem with ξ ∈ [0, 2] and
J ∈ [0.5, 1.5] using the same hybrid objective defined above.
The transfer efficiency of the ensemble pulse derived with the
pseudospectral method is robust to both parameter variations
and still compares favorably with the upper bound achieved
by the ROPE pulses.

3. Numerical convergence

Applying pseudospectral methods to the original optimal
control problem in Eq. (2) creates the discretized optimiza-
tion given in Eq. (12). An important fundamental concern is
to then show that the solutions of the discretized problem
converge to solutions of the original optimal control prob-
lem as the number of discretization and sampling nodes in-
crease. Convergence proofs for the pseudospectral method ex-
ist for only a few special classes of systems.32 Since most
quantum systems described by Eq. (2) do not fall within
these classes, here we illustrate the convergence numerically.
Figure 5 shows the convergence of the cost Javg, or per-
formance, of the Bloch system in Eq. (13) as a function of
the discretization in time (N ) and parameter sampling (Ns),
where for demonstration we have taken Ns = Nω = Nε . As
expected at low sampling there is not a reliable ordering be-
cause the number of samples taken is not sufficient to charac-
terize the parameter variation. However, for N and Ns large
enough, Fig. 5 illustrates consistent convergence in both dis-
cretization and sampling.

4. Implementation and extension

The multidimensional pseudospectral method proposed
for discretizing an optimal ensemble control problem is

FIG. 3. The optimal ensemble pulses (a), (b) effectively compensate for all
variations of ξ on the interval [0, 2] with only minor losses in transfer effi-
ciency (c) when compared to each analytic ROPE pulse (Ref. 30) efficiency
for a single value of ξ (N = 28 and Nξ = 8). The optimal ensemble pulse
(a) was developed by maximizing the average transfer efficiency and the
pulse (b) was developed by maximizing the average transfer efficiency and
minimizing energy. The transfer efficiency (c) corresponds to the hybrid
pulse in (b).

straightforward to implement and can be accomplished in
virtually any computation environment. The optimizations
shown here are solved in AMPL,33 which is a specific
syntax and program for expressing optimization problems,
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FIG. 4. The optimal ensemble pulse shown in (a) effectively compensates for
all variations of ξ on the interval [0, 2] and J on the interval [0.5, 1.5] with
comparable efficiency (b) to each ROPE pulse (Ref. 30) for a specific ξ and J .
This optimal ensemble pulse was developed by maximizing average transfer
efficiency and minimizing energy with N = 24, Nξ = 8, and NJ = 4.

FIG. 5. The performance (Javg) of the Bloch system, with ω ∈ [−1, 1] and
ε ∈ [0.9, 1.1], converges as the discretization (N ) and sampling (Ns ) in-
crease. For N and Ns large enough, the performance converges with increas-
ing discretization and/or sampling. The initial scatter observed at low Ns is
expected until a sufficient number of samples are taken to characterize the
parameter variation (i.e., Ns > 5).

FIG. 6. The optimal ensemble pulse (a) effectively compensates for all vari-
ations of ξa (ξc = 0.75ξa) on the interval [0, 1] with only minor losses in the
transfer efficiency (b) when compared to each analytic CROP pulse (Ref. 31)
designed for a single value of ξa . This optimal ensemble pulse was developed
with N = 16 and Nξa = 2.

however, pseudospectral discretization can be implemented
in a variety of languages including MATLAB, PYTHON, and
C. Once familiar with the discretization and environment,
the problem can be composed in very short amount of time.
After a problem is fully implemented, modifying the code
to be used with another system is straightforward. A ma-
jor factor in the speed of implementation compared to exist-
ing methods, e.g., the gradient method,12 is that the method
does not require the explicit form of the gradient, for ex-
ample, (∂J /∂u1, ∂J /∂u2) in the optimization problem in
Eq. (15), which becomes difficult as hybrid cost functions
are introduced. The small investment necessary to imple-
ment the pseudospectral method makes it readily accessible
to experimental and theoretical researchers alike. Transform-
ing the optimal ensemble control problem in Eq. (2) into a
constrained nonlinear programing optimization in Eq. (12)
enables researches to take advantage of mature and robust nu-
merical solvers designed for such problems. Numerous such
nonlinear programing solvers exist such as KNITRO, which is
used here.
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5. Computational complexity

All of the pseudospectral optimizations in this paper
exhibit relatively coarse discretization in the time domain
(N ) and sampling in the parameter domain (Ns). Figure 6
illustrates a solution to the normalized ensemble coherence
transfer problem with cross-correlated relaxation as in
Eq. (16) with ξa ∈ [0, 1], ξc = 0.75ξa , and J = 1. The opti-
mal coherence transfer of the pseudospectral pulse matches
favorably with that the single-ξa optimal CROP pulse.31 The
optimization corresponding to Fig. 6 achieves a level of
spin transfer with an average of 3 × 10−3 deviation from
the optimal upper bound with only N = 16 and Nξa = 2.
Maintaining low sampling numbers is of particular interest
as the computational complexity of an ensemble problem of
high dimension grows quickly. The optimization in Fig. 6 has
(17 nodes in t) × (3 nodes in ξ ) × (2 controls + 6 states)
= 408 independent decision variables, which is well within
the size of optimization typically handled by nonlinear
solvers.

IV. CONCLUSION

As pulse sequence design for control of quantum nsem-
bles becomes more complex, such as the consideration of
parameter variation, these challenging problems require in-
creasingly more flexible numerical methods to find solu-
tions. We present here a highly adaptable framework based
on pseudospectral discretization methods, which converts the
continuous-time optimal control problem into a constrained
algebraic optimization problem. This methodology admits a
natural extension to consider optimal sampling for ensem-
bles of quantum systems indexed by variations in parame-
ter values. In our previous work, we illustrated the ability of
the pseudospectral method to match the performance of ana-
lytic and gradient-based control pulses while at the same time
allowing for more diverse cost function options and faster
convergence rates.19 Here, we developed a multidimensional
extension of pseudospectral methods to the ensemble case,
where the quantum systems are characterized by variations
in natural frequency, rf scaling, relaxation rates, and coupling
constants. The systems and solutions illustrated here are more
than examples to motivate the pseudospectral method. They
are relevant and practical pulse design solutions for active
areas of research in NMR spectroscopy and imaging. The
pseudospectral discretization framework is universal to solv-
ing optimal ensemble control problems arising in all areas of
science and engineering, as demonstrated in recent extensions
to neuroscience.34

Quantum systems are beset with parameters that show
variation due to many environmental interactions. As more of
these parameters are modeled to include this variation so as
to properly characterize the physical system, it will be neces-
sary to find ways to further optimize the discretization and
sampling and reduce the computational complexity. In ad-
dition, while the pseudospectral method empirically exhibits
convergence, a formal proof of convergence can be found for

only a small class of systems.32 We aim to extend the exist-
ing convergence results to a broader family of systems, which
includes those studied for pulse design in quantum systems.

ACKNOWLEDGMENTS

This work was supported by the NSF under the Career
Award #0747877 and the AFOSR Young Investigator Award
FA9550-10-1-0146.

1J.-S. Li and N. Khaneja, Phys. Rev. A 73, 030302 (2006).
2M. H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61 (1986).
3R. Tycko, N. Cho, E. Schneider, and A. Pines, J. Magn. Reson. 61, 90
(1985).

4A. J. Shaka and R. Freeman, J. Magn. Reson. 55, 487 (1983).
5M. Garwood and Y. Ke, J. Magn. Reson. 94, 511 (1991).
6M. S. Silver and R. I. Joseph, Phys. Rev. A 31, 2753 (1985).
7C. Yip, J. Fessler, and D. Noll, Magn. Reson. Med. 54, 908 (2005).
8B. Pryor and N. Khaneja, J. Chem. Phys. 125, 194111 (2006).
9J. Pauly, P. Le Roux, D. Nishimura, and A. Macovski, IEEE Trans. Med.
Imaging 10, 53 (1991).

10B. Pryor, “Fourier synthesis methods for identification and control of en-
sembles,” Ph.D. thesis (Harvard University, 2007).

11S. Conolly, D. Nishimura, and A. Macovski, IEEE Trans. Med. Imaging
MI-5, 106 (1986).

12N. Khaneja, T. Reiss, C. Kehlet, T. S. -Herbruggen, and S. J. Glaser, J.
Magn. Reson. 172, 296 (2005).

13Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004).
14T. E. Skinner, T. Reiss, B. Luy, N. Khaneja, and S. J. Glaser, J. Magn.

Reson. 163, 8 (2003).
15N. Khaneja, J.-S. Li, C. Kehlet, B. Luy, and S. J. Glaser, Proc. Natl. Acad.

Sci. U.S.A. 101, 14742 (2004).
16D. P. Frueh, T. Ito, J.-S. Li, G. Wagner, S. J. Glaser, and N. Khaneja, J.

Biomol. NMR 32, 23 (2005).
17D. Stefanatos, S. J. Glaser, and N. Khaneja, Phys. Rev. A 72, 062320

(2005).
18K. Kobzar, B. Luy, N. Khaneja, and S. Glaser, J. Magn. Reson. 173, 229

(2005).
19J.-S. Li, J. Ruths, and D. Stefanatos, J. Chem. Phys. 131, 164110 (2009).
20G. Elnagar, M. A. Kazemi, and M. Razzaghi, IEEE Trans. Autom. Control

40, 1793 (1995).
21D. Manolopoulos, Chem. Phys. Lett. 152, 23 (1988).
22I. Ross and F. Fahroo, in New Trends in Nonlinear Dynamics and Control,

edited by W. Kang, M. Xiao, and C. R. Borges (Springer, Berlin, 2003), p.
327.

23F. Fahroo and I. Ross, J. Guid. Control Dyn. 24, 270 (2001).
24C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Meth-

ods (Springer, Berlin, 2006).
25J. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. (Dover, New

York, 2000).
26G. Szego, Orthogonal Polynomials (American Mathematical Society, New

York, 1959).
27P. Williams, ANZIAM J. 47, C101 (2006).
28D. Gottlieb, Y. Hussaini, and S. Orszag, in Spectral Methods for Partial

Differential Equations, edited by R. Voigt, D. Gottlieb, and M.Y. Hussaini
(SIAM, Philadelphia, 1984), p. 1.

29J. Cavanagh, W. J. Fairbrother, A. G. Palmer III, M. Rance, and N. J.
Skelton, Protein NMR Spectroscopy (Elsevier–Academic, Burlington, MA,
2007).

30N. Khaneja, T. Reiss, B. Luy, and S. J. Glasser, J. Magn. Reson. 162, 311
(2003).

31N. Khaneja, B. Luy, and S. J. Glaser, Proc. Natl. Acad. Sci. U.S.A. 100,
13162 (2003).

32Q. Gong, W. Kang, and M. Ross, IEEE Trans. Autom. Control 51, 1115
(2006).

33See supplementary material at http://dx.doi.org/10.1063/1.3541253 for an
example of AMPL code to solve the optimization problem in (16).

34J.-S. Li, in Proceedings of the Eighth IFAC Symposium on Nonlinear Con-
trol Systems, Italy, September 2010 (International Federation of Automatic
Control, Laxenburg, Austria, 2010).

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1103/PhysRevA.73.030302
http://dx.doi.org/10.1016/0079-6565(86)80005-X
http://dx.doi.org/10.1016/0022-2364(85)90270-7
http://dx.doi.org/10.1016/0022-2364(83)90133-6
http://dx.doi.org/10.1016/0022-2364(91)90137-I
http://dx.doi.org/10.1103/PhysRevA.31.2753
http://dx.doi.org/10.1002/(ISSN)1522-2594
http://dx.doi.org/10.1063/1.2390715
http://dx.doi.org/10.1109/42.75611
http://dx.doi.org/10.1109/42.75611
http://dx.doi.org/10.1109/TMI.1986.4307754
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1063/1.1650297
http://dx.doi.org/10.1016/S1090-7807(03)00153-8
http://dx.doi.org/10.1016/S1090-7807(03)00153-8
http://dx.doi.org/10.1073/pnas.0404820101
http://dx.doi.org/10.1073/pnas.0404820101
http://dx.doi.org/10.1007/s10858-005-3592-0
http://dx.doi.org/10.1007/s10858-005-3592-0
http://dx.doi.org/10.1103/PhysRevA.72.062320
http://dx.doi.org/10.1016/j.jmr.2004.12.005
http://dx.doi.org/10.1063/1.3253796
http://dx.doi.org/10.1109/9.467672
http://dx.doi.org/10.1016/0009-2614(88)87322-6
http://dx.doi.org/10.2514/2.4709
http://dx.doi.org/10.1016/S1090-7807(03)00003-X
http://dx.doi.org/10.1073/pnas.2134111100
http://dx.doi.org/10.1109/TAC.2006.878570
http://dx.doi.org/10.1063/1.3541253

