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In this paper, we present a unified computational method based on pseudospectral approximations
for the design of optimal pulse sequences in open quantum systems. The proposed method
transforms the problem of optimal pulse design, which is formulated as a continuous-time optimal
control problem, to a finite-dimensional constrained nonlinear programming problem. This resulting
optimization problem can then be solved using existing numerical optimization suites. We apply the
Legendre pseudospectral method to a series of optimal control problems on open quantum systems
that arise in nuclear magnetic resonance spectroscopy in liquids. These problems have been well
studied in previous literature and analytical optimal controls have been found. We find an excellent
agreement between the maximum transfer efficiency produced by our computational method and the
analytical expressions. Moreover, our method permits us to extend the analysis and address practical
concerns, including smoothing discontinuous controls as well as deriving minimum-energy and
time-optimal controls. The method is not restricted to the systems studied in this article and is
applicable to optimal manipulation of both closed and open quantum systems. © 2009 American

Institute of Physics. [do0i:10.1063/1.3253796]

I. INTRODUCTION

The problem of relaxation is ubiquitous in all applica-
tions involving coherent control of quantum mechanical phe-
nomena. In these applications, the quantum system of inter-
est interacts with its environment (open quantum system)
and relaxes back to some equilibrium state.! This relaxation
effect leads to degraded signal recovery and, in turn, to the
loss of experimental information. Optimal manipulation of
open quantum systems in such a way as to produce desired
evolutions while minimizing relaxation losses has been a
long standing and challenging problem in the area of quan-
tum control.

Various methods employing optimization techniques and
principles of optimal control have been developed for the
design of pulse sequences that can be used to manipulate
quantum systems in an optimal manner. However, a large
majority of them are limited to deal with closed quantum
systems.%8 Recently, relaxation-optimized pulse sequences
that maximize the performance of open quantum systems
have emerged. In some simple cases, for example, maximiz-
ing polarization transfer between a pair of coupled spins in
the presence of relaxation, the optimal pulses have been de-
rived analytically using optimal control theory.g_11 For more
general cases, gradient ascent algorithms were proposed to
optimize pulse sequences for optimally steering the dynam-
ics of coupled nuclear spins.lz_'7 These algorithms, while
successful, rely heavily on the computation of an analytic
expression for the system evolution propagator and gradients
as well as a large number of discretizations over which to
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evolve the system. This results in expensive computational
power and gradient ascent algorithms, in general, inherit
slow linear convergence rates.'®

In this article, we present a unified computational
method for optimal pulse sequence design based on pseu-
dospectral approximations. This paper is organized as fol-
lows. In Sec. II, we formulate optimal control problems in
open quantum systems and introduce pseudospectral meth-
ods. In Sec. III, we present several examples to demonstrate
the robustness of pseudospectral methods for optimal pulse
sequence design. The systems in the examples have been
thoroughly studied in our previous work or by others.

Il. PSEUDOSPECTRAL METHODS FOR OPEN
QUANTUM SYSTEMS

For an open quantum system, the evolution of its density
matrix is not unitary. In many applications of interest, the
environment can be approximated as an infinite thermostat,
the state of which never changes. Under this assumption, the
so-called Markovian approximation, it is possible to write
the evolution of the density matrix of an open system (master
equation) alone in the Lindblad form'’

p=—ilH(1),p]-L(p) (h=1), (1)

where H(t) is the system Hamiltonian that generates unitary
evolution while the term L(p) models relaxation (nonunitary
dynamics). The general form of L is

L( : ) = E kaB[Vm[V};’ ]]9 (2)
@B

where V, g are operators that represent various relaxation
mechanisms and k,g are coefficients that depend on the
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physical parameters of the system. The Hamiltonian H(r) has
the general form

m

H(1) = Hp+ 2 w(DH,, 3)
i=1

where H, is the free evolution Hamiltonian and 22, u,(t)H, is
the so-called control Hamiltonian. The latter is used to ma-
nipulate the open quantum system by application of electro-
magnetic pulses u,(r) of appropriate shape and frequency.

A typical problem of controlling an (finite-dimensional)
open quantum system has the following form: starting from
some initial state p(0) at =0, find optimal pulses u;(t), 0
=t=T, that bring the final density matrix p(7) at t=T as
“close” as possible to some target operator O. More pre-
cisely, find u,(¢) that maximize the final expectation value of
0, (0)(T)=trace{p(T)O}. Using the master Eq. (1) and the
relation  d(O)/dt=trace{pO} that holds for a time-
independent operator, we can find a system of ordinary dif-
ferential equations that describe the time evolution of an
open system for the desired transfer p(0)— 0,

i=1

xX= |:Hf+2 ui(t)'H,-]x, (4)

where x=(x,,...,x,)T € R" is the state vector whose ele-
ments are expectation values of the operators participating in
the transfer (for example, usually x,(1)=(0)(?)), H;, H;
e R"™*" are square matrices corresponding to operators H 1 H,
under a fixed basis of the state space (Hilbert space) and ¢
€[0,T]. This gives rise to an optimal control problem that
starting from an initial state x(0) (which is related to p(0)),
find the controls u,z), re[0,T], that maximize x,(7T)
=(O)(T) subject to the system evolution equations as in Eq.
(4). Specific examples are given in Sec. III.

Practical considerations such as power and time con-
straints guide us to consider a more general cost function
(the quantity that we want to maximize or minimize)

T
min (7, x(T)) + f L(x(1),u(r))dt, (5)

0
where u=(u,,u,,...,u,)" is the control vector, ¢ is the ter-

minal cost depending on the final state at the terminal time
t=T, and L is the running cost depending on the time history
of the state and control variables, x and u. For example, if
¢=-x,(T) and L=0, then Eq. (5) is equivalent to maximiz-
ing x,(T) as mentioned above, while if ¢=0 and L=3"" u?,
then Eq. (5) is equivalent to minimizing the energy of the
pulses. In many cases of application, not only the initial state
x(0) can be specified but also other end point constraints may
be imposed. They can be expressed in a compact form as

e(x(0),x(T)) =0. (6)

Additionally, constraints on the state and control variables
satisfied along the path of the system may be imposed, such
as the amplitude constraints where |u;()|=M, for all t
€ [0,T], where M is the maximum amplitude of the pulses.
Such constraints can be expressed as
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g(x(1),u(r)) = 0. (7)

This class of optimal control problems of bilinear systems
(linear in both state and control) described in Eq. (4) is, in
general, analytically intractable. However, they can be effi-
ciently solved by pseudospectral methods.

Spectral methods involve the expansion of functions in
terms of orthogonal polynomial basis functions on the do-
main [—1,1]. Using such a basis leads to spectral accuracy,
namely, the kth coefficient of the expansion decays faster
than any inverse power of k' which is analogous to the
Fourier series expansion for periodic functions. This property
of rapid decay from spectral methods is adapted to solve
optimal control problems such as the one described above. It
permits the use of relatively low order polynomials to ap-
proximate the control and state trajectory functions, u(z) and
x(1).

Since the support of the orthogonal polynomial bases is
on the interval [—1,1], we first transform the optimal control
problem from the time domain ¢ € [0,7] to 7€ [-1,1] using
the simple affine transformation,

2t—-T
=

(1) =

In a redundant use of notation, we make this transition and
reuse the same time variable 7. The transformed optimal con-
trol problem can now be written as

1
min ¢o(1,x(1)) + gf L(x(1),u(z))dt,
-1

T m
s.t. X = 5 [Hf+ > ui(t)Hi]x,
i=1

(8)
e(x(=1),x(1)) =0,

8(x(2),u(r)) = 0.

Pseudospectral methods were developed to solve partial dif-
ferential equations and recently adapted to solve optimal
control problems.zzf26 Several of the concepts involved in
pseudospectral methods have previously found use in areas
of chemical physics, such as implementing Lagrange inter-
polating polynomials based on Gauss—Lobatto quadrature to
enforce boundary conditions in quantum scattering
problems.27 Pseudospectral approximations are a spectral
collocation (or interpolation) method in which the differen-
tial equation describing the state dynamics is enforced at
specific nodes. Spectral collocation is motivated by the
Chebyshev equioscillation theorem® which states that the
best Nth order approximating polynomial py(f) to a continu-
ous function f on the interval [—1,1] is an interpolating poly-
nomial, as evaluated by the uniform norm,

Ir=Patpl- = minlr—p. ©)

where [Py is the space of all polynomials of degree at most N.
Since any Nth order interpolating polynomial can be repre-
sented in terms of the Lagrange basis functions (or Lagrange
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FIG. 1. The N=16 order interpolation of the function f(x)=1/(16x>+1)
based on a uniform grid [panel (a)] demonstrates the Runge phenomenon
whereas the interpolation based on the LGL grid [panel (b)] does not.

polynomials), we use these functions to express the interpo-
lating approximations of the continuous state and control
functions, x(7) and u(z), as in model (8). Given a grid of N
+1 interpolation nodes within [—1,1], I'={ry<t,<--- <tp},
the Lagrange polynomials {€,} e Py, ke{0,1,...,N}, are
constructed by

N

(t—1)
Va =
{0 i1=_0[ (e—1)°
i*k

which are characterized by the kth polynomial taking unit
value at the kth node of the grid and zero value at all other
nodes of the grid, i.e., €,(¢;)= &, where &; is the Kronecker
delta function.”’ Note that Lagrange polynomials form an
orthogonal basis with respect to the discrete inner product
(P.a)==Lop(t)q(1y).

With these tools, we can now write the Nth order inter-
polating approximations of the state trajectory and control
functions with respect to a given grid I" of N+1 nodes as

() = Iy x() = 2 Tlald). (10)

u(t) = Iy u(t) = 2y wly(0), (1)

where X; and i7; are not only the coefficients of the expan-
sions but also the function values at the kth node due to the
definition of the Lagrange polynomials.22 Because these
Lagrange polynomials are constructed based on the choice of
these nodes, the approximations made with this basis as in
Egs. (10) and (11) are sensitive to the choice of the nodes.
For an arbitrary selection of nodes, as the order of approxi-
mation N gets large, Runge phenomenon may occur; that is,
there are increasingly larger spurious oscillations near the
end points of the [—1,1] domain,* as shown in Fig. 1. A
selection of Gauss-type nodes with quadratic spacing toward
the end points suppresses such oscillation between the inter-
polation nodes and greatly increases the accuracy of the
approximation.31 It has been shown that for a fixed N>0 and
a norm given by Eq. (9), Gauss-type nodes are asymptoti-
cally close to optimal for interpolating a continuous function
over the domain [—1,1].**

In order to maintain the advantages of a spectral method
while using collocation, we write the Lagrange polynomials
in terms of orthogonal polynomials. We choose to focus
on the Legendre polynomials which are orthogonal in
L,[-1,1] defined with a weighted inner product,
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1
(f.8)= f f(Dg(w(ndt,
-1

with a constant weight function w(¢)=1, V¢t e[-1,1], where
f,g € Ly[-1,1]. Implementing the pseudospectral method
with the orthogonal Legendre polynomials determines the
grid to be Legendre—Gauss nodes which are the roots of
LN(I), the derivative of the Nth order Legendre polynomial.
To enforce the method at the end points, we use the
Legendre-Gauss—Lobatto (LGL) nodes, which include
tp=—1 and ty=1, ie, I''Ct={r:L\(1)],=0,j=1,....N
—1}U{-1,1}. Then, the Lagrange polynomiéls €,(7) can be
expressed with respect to I'=6L as®

1 (2 = 1)L(t)
NN+ 1)Ly(t,)  t—1;

€ (1) =

b}

where {r,} e 'L k=0,1,...,N.
From the interpolation as in Eq. (10), we have

d N
0= PEANGH
! k=0

Using special recursive identities for the derivative of Leg-
endre polynomials,”® we have at the LGL nodes tje THOL,
j=0,1,...,N,

N N

d . B
d_IN x(lj)=2xk€k(fj)=2Djkxk, (12)
t k=0 k=0

where D, are jkth elements of the constant (N+1) X (N+1)
differentiation matrix D defined by33

(L) 1
SN ik
Ly(te) t; =ty
N(N+1) )
- ]=k=0
Dj=S 4 (13)
N(N+1) ]
—, ]:k:N
4
L 0, otherwise.

In addition, the integral cost functional in the optimal
control problem (8) can be approximated by the Gaussian
quadrature. In particular, LGL quadrature is used to enforce
end point conditions and defined as

1 N 1
f fode= 2 flt)wi,  w;= f €n)dt, (14)
-1 i=1

-1

which is exact for fe P,y_; when {t;} € [~ 2! Therefore,
the choice of LGL nodes not only achieves close to optimal
interpolation error by preventing increasingly spurious oscil-
lations as N gets large but also ensures the accuracy of the
numerical integration.

Compiling Egs. (10), (12), and (14) we can convert the
optimal control problem as in Eq. (8) into the following
finite-dimensional constrained minimization problem by dis-
cretizing the states and controls with an interpolation
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scheme, representing the differential equation through recur-
sive definition of spectral derivatives, and expressing integral
terms with the Gaussian quadrature,
N
. — T - -
min ¢(7,xy) + EE L(x;i)w;,
i=0

N

_ T SPP
S.t. 2 Djkxk = 5 [Hf‘F E Mini]xj’
k=0 i=1

e('fO’fN) = O’

gx,i) =0, Vjefol,... N},

where Ui, xi=1,...,m, are components of the vector u; de-
noting the value of the control function u; at the jth LGL
node t], namely, 1712(1711,,I/_tmj)Tz(Ml(tl),,Mm(t]))T
Solvers for this type of constrained minimization problem
are readily available and straightforward to implement.

lll. EXAMPLES FROM NUCLEAR MAGNETIC
RESONANCE SPECTROSCOPY IN LIQUIDS

In this section we show the robustness and efficiency of
the pseudospectral method by applying it to a series of opti-
mal control problems on open quantum systems that arise in
NMR spectroscopy of proteins in liquids. These control
problems were selected because analytical expressions for
their optimal solutions have been derived in literature,g’lo’17
making them well suited for testing the performance of the
pseudospectral method on open quantum systems.

A. Pair of coupled heteronuclear spins

The first open quantum system from liquid state NMR
that we consider is an isolated pair of heteronuclear spins 1/2
(spins that belong to different nuclear species), denoted as 1,
(for example "H) and I, (for example, °C or '°N), with a
scalar coupling J¥Ina doubly rotating frame, which rotates
with each spin at its resonance (Larmor) frequency, the free
evolution Hamiltonian for this system is Hy=2J1I, I,,, where
I,,=0,,/2, I,,=0,,/2 and o0y,,0,, are the Pauli spin matri-
ces for spins /; and I,, respectively. Note that this Hamil-
tonian is valid in the so-called weak coupling limit, where
the resonance frequencies of the spins satisfy |w,—w,|>J
and thus the Heisenberg coupling (Z,-I,), which is the char-
acteristic indirect coupling between spins in isotropic liquids,
can be approximated by the scalar coupling (/ IZIZZ).ZO

The most important relaxation mechanisms in NMR
spectroscopy in liquid solutions are due to dipole-dipole
(DD) interaction and chemical shift anisotropy (CSA), as
well as their interference effects, i.e., DD-CSA cross
correlation.”’ We initially consider the spin system without
cross-correlated relaxation.

1. Spin pair without cross-correlated relaxation

Here we consider the open quantum system with only
DD and CSA relaxation ignoring the cross-correlated relax-
ation. This case approximates, for example, the situation for
deuterated and '"N-labeled proteins in H,O at moderately
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high magnetic fields (e.g., 10 T), where the 'H—'°N spin
pairs are isolated and CSA relaxation is small. Furthermore,
we focus on slowly tumbling molecules in the so-called spin
diffusion limit.** In this case, longitudinal relaxation rates
(1/T,) are negligible compared to transverse relaxation rates
(1/T,).*

For this coupled two-spin system, the free evolution of
the density matrix p in the doubly rotating frame is given by
the following master equation:

p=- i‘][211z121’p] - kDD[ZIlzIZZ’[ZIlzIZZ’p]]
- leSA[Ilza[Ilz’ P]] - kéSA[IZZ’ [IZZ’ P]], (15)

where J is the scalar coupling constant, kpp is the DD relax-
ation rate, and kig,,kig, are CSA relaxation rates for spins
I,,1,, respectively. These relaxation rates depend on various
physical parameters of the system, such as the gyromagnetic
ratios of the spins, the internuclear distance, and the correla-
tion time of the rotational tumbling.20

One problem of interest in NMR experiments is to find
the pulses (controls), w,(r) and w,(¢) applied in the x and y
directions, respectively, for optirrial polarization transfer 7,
—1I,, from one spin to the other. This transfer is suitably
done in two steps: I;,— 2I.I,,—I,,. Since these two steps
are symmetric, the optimal controls for the second step are
symmetric to those of the first one. Thus, we only need to
concentrate on the first step and the objective is to maximize
the transfer I,,—2II,.. In other words, starting from the
initial state p(0)=1,,, we tend to maximize the final expecta-
tion value of the target operator O=21,.1,., i.e., 21,.1,.)(T)
=trace{p(T)21,1,.}, where T is the final time of the experi-
ment and p(T) is controlled by w,(f) and w,(r). Using the
master Eq. (15), we can find differential equations that de-
scribe the time evolution of the expectations of the operators
participating in the desired transfer as presented in Sec. II.
The corresponding equations in matrix form are

)él 0 — U 0 0 X1
)62 _ uy —g -1 0 Xp (16)
x:; 0 1 —g — Uy X3 ’

)é4 0 0 Uy 0 X4

where x;=(1,.), x,=(I\y), x3=(21,,l5;), x4=(21,.15;), and &
=(kDD+k'CSA)/J, and the controls u(f)=w,(¢)/J and u,()
=w,(1)/J are the normalized (with respect to J) transverse
components of the applied magnetic field. Note that the
above system (16) has the bilinear form as shown in Eq. (4).

Consequently, we now arrive at an optimal control prob-
lem for the transfer 1,,— 21,.I,, that is to find u,(7) and u,(z),
0=t=T, such that starting from x(0)=(1,0,0,0)7, x,(7) is
maximized subject to the evolution Eq. (16). This problem
has been solved analytically and the resulting analytical
pulse was denoted as ROPE.’ It is shown there that the maxi-
mum achievable value of x4, i.e., the efficiency 7, of the
transfer is given as a function of parameter ¢ by

m=VE+1-¢ (17)

Using the pseudospectral method presented in this paper,
we calculated numerically optimal controls u;(z),u,(¢) for
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FIG. 2. The efficiency of the transfer x; — x, in system (16) achieved by the
pseudospectral method, as a function of the relaxation parameter ¢ in the
range [0,1]. The theoretically calculated maximum efficiency given by
Eq. (17) is also shown.

various values of £ in the range [0,1] to maximize the corre-
sponding achievable values of x,(7). The method was imple-
mented in MATLAB using the third party KNITRO nonlinear
programming solver from Ziena optimization. The problem
was approximated using 25 (N=24) nodes and with the ter-
minal time free to vary, but with a maximum time of 7=10.
A unified and general method should not use any prior
knowledge so the solver was given an arbitrary initial guess
for the controls. In this case, we take u;(f)=u,(r)=1 and T
=1. The termination tolerance on the cost function of the
solver was set at 1 X 1078, In Fig. 2 we plot the value x,(7)
achieved by the pseudospectral method for £e[0,1]. For
comparison, we also plot the maximum efficiency given in
Eq. (17). The excellent agreement shows the efficiency of the
method to approximate optimal solutions.

Another clear advantage of the pseudospectral method
well illustrated by this problem is that the calculated control
pulses are smooth functions. Figure 3(a) shows the disconti-
nuities of the analytically derived optimal pulses.9 In particu-
lar, notice the high-amplitude spikes at the beginning and
end of each component of the analytical pulse. Such discon-
tinuities can be challenging, if not impossible, to implement
in practice and high amplitudes can be hazardous for the
experiment sample, equipment, and human subjects as in
magnetic resonance imaging (MRI). The pulse amplitude de-
rived by the pseudospectral method, shown in Fig. 3(b), is
easily implementable and maintains low values despite
achieving transfer efficiencies within 1 X 1073 of the theoret-
ical optimal values. The pseudospectral pulse shown in Fig.
3(b) is attained from an optimization that minimizes energy
while maintaining a desired transfer efficiency (in practice,
this can be set to a desired efficiency of 1 and the solver will
find the least infeasible solution). Therefore, not only is the
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FIG. 3. Pseudospectral controls [panel (b)] and state trajectories [panel (d)]
are compared to analytic ROPE (Ref. 9) controls (panel a) and trajectories
[panel (c)] for é=1. Each of the hard pulses at =0 and r=T [panel (a)]
corresponds to a 35° rotation and transfer the state from x(07)
=[1,0,0,0]" to x(0*)=[cos 35°,sin 35°,0,0]" and from x(T")
=[0,x,(T), 7 sin 35°, 5 cos 35°]" to x(T*)=[0,x,(T),0, 5]”, respectively, in
near instantaneous time.

pseudospectral pulse without discontinuities but it also ac-
complishes the transfer with 45% less energy than the ROPE
pulse.

2. Spin pair with cross-correlated relaxation

If DD-CSA cross-correlated relaxation cannot be ne-
glected, the master equation as in Eq. (15) is then modified to
incorporate it as'”

p == i‘][211112z’ p] - kDD[lezI2z’ [211z1217p]]
- k(l:SA[Ilza [Ilz’ P]] - k(Z:SA[IZZ’ [1213 P]]
— kppyesal 211Dz U1 p1 = kppyesal 212Dz [ oo P11,

where kDD,k(ljS A’k%:s A are autorelaxation rates due to DD re-
laxation, CSA relaxation of spin /;, CSA relaxation of spin
L, and kjypcsa - kB cs are cross-correlation rates of spins /
and I, due to interference effects between DD and CSA re-
laxation mechanisms.

Using this master equation, we can find the following
equations for the ensemble averages:

X 0 -u u O 0 0 X
X u =& 0 -1 =& 0 |[x
X3 —u, 0 -§& -& 1 0 ||x3
G710 1 —& —& 0 —u||x |
Xs 0 -& -1 0 -& u ||xs
X6 0 0 0 u, —-u; 0 Xe

(18)

where  x;=(I;), x=(I,), x3:<]11y>’ x4=<211)i12z>» X5
=<211x12z>s x6:<211z121>’ gaz(kDD+kCSA)/J’ &c=kpp/csal I
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FIG. 4. The efficiency of the transfer x; — x4 in system (18) achieved by the
pseudospectral method, as a function of the relaxation parameter &, in the
range [0,1], with £.=0.75¢,. The theoretically calculated maximum effi-
ciency given by Eq. (19) is also shown.

and u,(7),u,(r) are the available controls as before. Starting
from x(0)=(1,0,0,0,0,0)7, we want to design u(¢) and
u,(r) that maximize x4(7) subject to Eq. (18).

This problem has also been solved analytically and the
analytical pulse was denoted as CROP." It is shown there
that the maximum achievable value of xg, i.e., the efficiency
7, of the transfer, is given by the same formula as before,

m=NE+1-£ (19)
but now
)
£= i 52 (20)

Using the pseudospectral method introduced in this pa-
per, we calculated numerically optimal controls u,(z),u,(z)
for various values of £, over [0,1] and with £.=0.75¢,, to
maximize the corresponding achievable values of x4(7T). Us-
ing the same MATLAB program and KNITRO solver, the opti-
mal control problem was approximated by 25 (N=24) nodes
with a free terminal time (maximum 7=5). A similar con-
stant initial guess was used and the cost function tolerance
was set to 1 X 107. In Fig. 4 we plot the values of x¢(7)
achieved by the pseudospectral method and the maximum
efficiency given in Eq. (19). Again, an excellent agreement is
observed. The CROP and pseudospectral control pulse com-
ponents are plotted in Fig. 5. The pseudospectral pulse in
Fig. 5(b) is optimized as a time-optimal pulse that achieves a
transfer efficiency within 1 10~* of the analytical optimal
value 7=0.6022 with a duration 7=2.2389, 44% shorter than
the CROP pulse given the same bound in control amplitude,
further highlighting the flexibility of this numerical method.

J. Chem. Phys. 131, 164110 (2009)

amplitude
o

amplitude

FIG. 5. The CROP pulse [panel (a)] is compared to the time-optimal pseu-
dospectral control pulse [panel (b)] for £,=1 and &.=0.75. The pseudospec-
tral control pulse achieves a transfer efficiency within 1X 107> of the ana-
Iytical optimal value 7=0.6022 with a duration 7=2.2389, 44% shorter than
the CROP pulse given the same bound in control amplitude.

B. Three spin chain

The next open quantum system that we consider is a
three spin chain (spins I;,1,,I5) with equal scalar couplings
between nearest neighbors. In a suitably chosen (multiple)
rotating frame, which rotates with each spin at its resonance
(Larmor) frequency, the Hamiltongan H, that governs the free
evolution of the system is H;=v2J(l,[,,+1,.13,). The com-
mon coupling constant is written in the form v2J for normal-
ization reasons. As in the first example described in Sec.
IIT A 1, we neglect cross-correlated relaxation and focus on
slowly tumbling molecules in the spin diffusion limit. The
corresponding master equation is

p=—iN2 L.+ Lol p] - kool 21y Lo 2111, )]
= kppl 215, 15,,[215.15., p]] = kppl 215,11, [ 2131, ., p]]
= kesalli [z p]] = kgsalloa [ 1. P11
- kéSA[I3z7 [I3Z’P]]~ (21)

For this system we examine the polarization transfer from
spin I, to spin I3, I;,— I5,. This transfer is suitably done in
three steps, I,,—2I,l,,—2I,,I;,—I3,. The first and last
steps are similar to the previously examined spin transfer,
thus we concentrate on the intermediate step 21,.1,,
— 21, I5,, which corresponds to p(0)=2I,_I,, and O=21,1I5_.
Similarly, from the master Eq. (21), we can derive the asso-
ciated differential equations which describe the time evolu-
tion of the expectation values of operators participating in
this transfer,
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FIG. 6. The efficiency for transfer x; —xs in system (22) achieved by the
pseudospectral method, as a function of the relaxation parameter ¢ in the
range [0,1]. The corresponding numerical results achieved by a state-of-the-
art gradient ascent algorithm as well as the theoretically calculated upper
bound for the maximum efficiency, given by Eq. (23), are also shown.

X 0O -« 0 0 O X1

Xy u —-¢ -1 0 0 Xy

X [=10 1 -¢ -1 0 x3 |, (22)
Xy 0 0 1 =¢ —ul|x

Xs _0 0O 0 u O JLxs

where x;=(21,.15,), x,=(2I,.1,,), x3=<\'6(211212y13z+12y/2)>’
xy=—(2hy,03,), x5=(215,13,), and é=(2kpp+kig,)/J."" Trans-
verse relaxation rate is normalized with respect to the scalar
coupling J and the normalized relaxation parameter is & The
control function u(t)=w,(#)/J is the y-component of the ap-
plied magnetic field. The x-component creates an equivalent
path from x; to x5 and needs not be considered."”

The corresponding optimal control problem is to find,
starting from x(0)=(1,0,0,0,0)7, u(7) that maximizes x5(7)
subject to Eq. (22). It has been shown in Ref. 17 that a strict
upper bound, 73, of the maximum achievable value of x5 is
characterized by ¢,

_(E+2-9°

7 > (23)

It is important to note that this upper bound was derived
from an augmented version of the system in Eq. (22), which
can be studied analytically. This bound was used in Ref. 17
to evaluate the performance of a gradient ascent algorithm
for calculating optimal u(r) for system (22). Therefore, the
true optimal efficiencies of Eq. (22) are unknown, however,
the optimal efficiencies of the augmented system serve as a
strict upper bound.

In this paper, the optimal control u(z) was calculated by
the pseudospectral method for various values of & in the
range [0,1] to maximize the corresponding values xs(7),

J. Chem. Phys. 131, 164110 (2009)
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FIG. 7. The gradient derived control pulse [panel (a)] is compared to the
pseudospectral control pulse [panel (b)] for £=1.

where the optimal control problem was approximated by
25 (N=24) nodes with a free terminal time (maximum T
=10). A similar constant initial guess was used and the cost
function tolerance was set to 1 X 107, The values of x5(7)
achieved by the pseudospectral method are displayed in
Fig. 6. The corresponding numerical results by the state-of-
the-art gradient ascent algorithm used in Ref. 17 and the
analytical efficiency upper bound given in Eq. (23) are also
shown in the same figure. Observe the excellent agreement
between the efficiencies of the two numerical methods, lower
of course than the analytical upper bound. In Fig. 7 we show
the gradient control pulse with the pseudospectral control
pulse for the case é=1. It is worth observing that the gradient
method, which optimizes over the control variables, uses a
discretization of 1000 points on [0,7], leading to 1000
X (1 control)=1000 decision variables. The pseudospectral
method uses a discretization with 25 points and optimizes
over both the states and controls, i.e., 25X (5 states
+1 control) =150 decision variables. This factor on the order
of five difference in the number of decision variables of the
discretized system is one of the key advantages of the pseu-
dospectral method. In the former two systems where there
were two control variables, the gradient method would
double the number of decision variables, making a factor on
the order of ten difference.

C. Numerical convergence analysis

Here we present convergence results for the pseudospec-
tral optimizations presented in this paper. The convergence
property is related to the conditions under which a sequence
of discretized optimization solutions, provided existing, con-
verges to the original optimal control solution as the number
of nodes (discretizations) increases. Convergence rates of
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FIG. 8. Numerical results are shown for the convergence of the pseudospec-
tral transfer efficiency to the optimal transfer efficiency in the cases of spin
pair, £=1 [panel (a)]; spin pair with cross-correlated relaxation, &,=1, &
=0.75 [panel (b)]; three spin chain, é&=1 [panel (c)]. The error in the spin
pair examples is the difference between the pseudospectral transfer effi-
ciency and the optimal efficiency, whereas in the three spin chain case the
error is the difference between the pseudospectral transfer efficiency and the
upper bound, which we do not expect to converge to zero.

pseudospectral methods as applied to optimal control prob-
lems have so far been derived in only the case, in which the
nonlinear dynamics are feedback linearizable.>* However,
the bilinear dynamics for modeling quantum control systems
as discussed in this article, in general, do not fall into this
category. Since analytic convergence results are challenging
to identify for general systems, we analyzed the convergence
numerically to guarantee that solutions do converge as the
number of nodes, N, increases. Figure 8 presents this analy-
sis for each system and confirms a robust convergence. The
rapid convergence which is characteristic of the pseudospec-
tral method can also be seen clearly as well as justification
that the node selection, N=24, is sufficient to accurately
solve these illustrative examples.

IV. CONCLUSION

In this paper, we presented a method based on pseu-
dospectral approximations to effectively discretize and solve

J. Chem. Phys. 131, 164110 (2009)

optimal control problems associated with pulse sequence de-
sign for open quantum mechanical systems. Examples from
NMR spectroscopy in liquid solutions evidenced the flexibil-
ity and efficiency of the proposed methods. In these ex-
amples, pseudospectral methods generated pulses that
achieve performance similar to that of analytical methods,
and it should be noted that these “approximated” optimal
pulses found by pseudospectral methods are always smooth.
A strength of pseudospectral methods is that they provide a
robust technique which is easily extendible and implement-
able. In addition, it has been shown empirically that these
methods have exponential convergence rates,” while state-
of-the-art algorithms such as gradient methods typically evi-
dence linear convergence. Pseudospectral methods provide a
universal tool for solving pulse design problems for dissipa-
tive quantum systems coming from different physical con-
texts (NMR, MRI, Quantum Optics, etc.). Some immediate
extensions of the methods presented here include considering
the optimal pulse design problem of steering a family of
open or closed quantum systems with different dynamics. A
concrete example is to consider a family of coupled spin
systems where each one is characterized by a different relax-
ation rate, e.g., £ can take values from a positive interval
[£,,&]. In this case, the optimal control problem would seek
to accomplish the maximum transfer, 7, over all systems,
namely, to maximize [ % 7(&)d€ subject to the system evolu-
tion as in Eq. (16), (18), and (22). Experimental verification
of the performance of the pseudospectral pulses is also of
keen interest and currently being pursued.

ACKNOWLEDGMENTS

This work was supported by the NSF under Grant No.
07478717.

"H. Breuer and F. Petruccione, The Theory of Open Quantum Systems
(Oxford University Press, New York, 2007).

’K. Kobzar, T. Skinner, N. Khaneja, S. Glaser, and B. Luy, J. Magn.
Reson. 170, 236 (2004).

K. Kobzar, T. Skinner, N. Khaneja, S. Glaser, and B. Luy, J. Magn.
Reson. 194, 58 (2008).

47. Pauly, P. Le Roux, D. Nishimura, and A. Macovski, IEEE Trans. Med.
Imaging 10, 53 (1991).

’s. Conolly, D. Nishimura, and A. Macovski, IEEE Trans. Med. Imaging
MI-5, 106 (1986).

oy, Mao, T. H. Mareci, K. N. Scott, and E. R. Andrew, J. Magn. Reson.
70, 310 (1986).

’N. Khaneja, R. Brockett, and S. J. Glaser, Phys. Rev. A 63, 032308
(2001).

8B. Pryor and N. Khaneja, J. Chem. Phys. 125, 194111 (2006).

°N. Khaneja, T. Reiss, B. Luy, and S. J. Glasser, J. Magn. Reson. 162, 311
(2003).

0N, Khaneja, B. Luy, and S. J. Glaser, Proc. Natl. Acad. Sci. U.S.A. 100,
13162 (2003).

p, Stefanatos, N. Khaneja, and S. J. Glaser, Phys. Rev. A 69, 022319
(2004).

2N. Khaneja, T. Reiss, C. Kehlet T. S.-Herbruggen, and S. J. Glaser, J.
Magn. Reson. 172, 296 (2005).

13Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004).

T E. Skinner, T. Reiss, B. Luy, N. Khaneja, and S. J. Glaser, J. Magn.
Reson. 163, 8 (2003).

BN, Khaneja, J.-S. Li, C. Kehlet, B. Luy, and S. J. Glaser, Proc. Natl.
Acad. Sci. U.S.A. 101, 14742 (2004).

p. p. Frueh, T. Ito, J.-S. Li, G. Wagner, S. J. Glaser, and N. Khaneja, J.
Biomol. NMR 32, 23 (2005).

D. Stefanatos, S. J. Glaser, and N. Khaneja, Phys. Rev. A 72, 062320

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1016/j.jmr.2004.06.017
http://dx.doi.org/10.1016/j.jmr.2004.06.017
http://dx.doi.org/10.1016/j.jmr.2008.05.023
http://dx.doi.org/10.1016/j.jmr.2008.05.023
http://dx.doi.org/10.1109/42.75611
http://dx.doi.org/10.1109/42.75611
http://dx.doi.org/10.1109/TMI.1986.4307754
http://dx.doi.org/10.1103/PhysRevA.63.032308
http://dx.doi.org/10.1063/1.2390715
http://dx.doi.org/10.1016/S1090-7807(03)00003-X
http://dx.doi.org/10.1073/pnas.2134111100
http://dx.doi.org/10.1103/PhysRevA.69.022319
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1063/1.1650297
http://dx.doi.org/10.1016/S1090-7807(03)00153-8
http://dx.doi.org/10.1016/S1090-7807(03)00153-8
http://dx.doi.org/10.1073/pnas.0404820101
http://dx.doi.org/10.1073/pnas.0404820101
http://dx.doi.org/10.1007/s10858-005-3592-0
http://dx.doi.org/10.1007/s10858-005-3592-0
http://dx.doi.org/10.1103/PhysRevA.72.062320

164110-9 A pseudospectral method for quantum control

(2005).

Bp. p. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont,
MA, 1999).

G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

M. Goldman, Quantum Description of High-Resolution NMR in Liquids
(Clarendon, Oxford, 1988).

2c. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral
Methods (Springer, Berlin, 2006).

2a. Elnagar, M. A. Kazemi, and M. Razzaghi, IEEE Trans. Autom. Con-
trol 40, 1793 (1995).

231, Ross and F. Fahroo, in New Trends in Nonlinear Dynamics and Con-
trol, edited by W. Kang, M. Xiao, and C. Borges (Springer, Berlin, 2003),
p. 327.

24Q. Gong, W. Kang, , and 1. Ross, IEEE Trans. Autom. Control 51, 1115
(2006).

2 F, Fahroo and I. Ross, J. Guid. Control Dynam. 24, 270 (2001).

P, Williams, ANZIAM J. 47, C101 (2006).

2'D. Manolopoulos, Chem. Phys. Lett. 152, 23 (1988).

J. Chem. Phys. 131, 164110 (2009)

Bp . Davis, Interpolation and Approximation (Blaisdell, New York,
1963).

¥aG. Szego, Orthogonal Polynomials (American Mathematical Society,
New York, 1959).

0B, Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge
University Press, New York, 1998).

3. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. (Dover, New
York, 2000).

323. Smith, Ann. Math. Informaticae 33, 109 (2006).

3D. Gottlieb, Y. Hussaini, and S. Orszag, in Spectral Methods for Partial
Differential Equations, edited by R. Voigt, D. Gottlieb, and M. Y. Hus-
saini (STAM, Philadelphia, 1984), p. 1.

MR R Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear
Magnetic Resonance in One and Two Dimensions (Clarendon, Oxford,
1987).

BN Trefethen, Spectral Methods in MATLAB (SIAM, Philadelphia,
2000).

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1109/9.467672
http://dx.doi.org/10.1109/9.467672
http://dx.doi.org/10.1109/TAC.2006.878570
http://dx.doi.org/10.2514/2.4709
http://dx.doi.org/10.1016/0009-2614(88)87322-6

