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a b s t r a c t

A bilinear dynamical system can be used to represent the model of a network in which the state obeys
linear dynamics and the input is the edge weight of certain controlled edges in the network. We present
algebraic and graph-theoretic conditions for the structural controllability of a class of bilinear systems
with a single control where the input matrix is rank one. Subsequently, we use these conditions, given a
system state graph, to develop an algorithm to design the location of controlled edges (the input matrix)
such that the system is structurally controllable.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Recent studies have employed concepts from structural control
in order to bring control theoretic analysis to large-scale complex
networks. The rapid rise of computational capabilities and access
to data in recent years has led to modeling many important sys-
tems – from intracellular biochemical pathways to the redesigned
smart power grid – as networks (Newman, 2010). Understanding
fundamental control properties is a key requirement to system-
atically studying and, ultimately, influencing these important sys-
tems. Classic control techniques, however, do not scalewell to pro-
vide a feasible assessment of these properties. Structural control
has proven to be a useful tool towards this goal.

Structural controllability is a generalization of classic controlla-
bility in which systems are analyzed based only on their structure,
i.e., the existence or absence of a direct effect of one state on the
change of another, and not the exact rate at which the states influ-
ence each other. Structural control is, therefore, ‘‘parameter free’’
in the sense that the analysis holds for all parameter values, except
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for specific pathological cases. This type of control is well-suited
to analyze network systems by providing simplifications to make
methods tractable and a set of tools that do not depend on exact
parameter values, because such values are rarely known for most
networks.

Conditions for structural controllability rely on classical control
results, therefore, the analysis of networks has been limited to
the case of linear dynamical systems, modeled as networks (Liu,
Slotine, & Barabasi, 2011; Ruths & Ruths, 2014). While this body
of work has already been able to provide revealing insights that
connect network structures, such as the degree distribution, to
control properties, more realistic models of these systems would
permit deeper and more relevant analysis. In a network modeled
by linear control dynamics, input signals are applied exogenously
to specific nodes in the network, the influence of which is then
able to control the entire network. Thismechanism of influencing a
network is applicable, for example, in resource networks (pipeline
networks, power grids, and supply chains) where volume is
injected or removed at nodes to manage demand, or food web
networks where species can be bred and released or culled to
achieve a population size (Dunne, Williams, & Martinez, 2002).

More often, however, this model falls short of how influence
is achieved in a network. In a road network, tolls can be
imposed on certain roads to alleviate traffic at specific points in
the network. Similarly, biochemical networks are typically not
controlled through direct injection of a protein, but instead by
administering a drug that effects the rate at which that protein is
produced naturally by the body (Marinissen & Gutkind, 2001).

A linear control model represents top-down control of a
network whereas a bilinear model represents incentive-driven
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control from within a network. Both schemes require global
oversight, since controls are generated centrally, however, the top-
down (linear) scheme effects the states of the system directly, and
the incentive-driven (bilinear) scheme effects the states indirectly
by throttling the natural interaction between two states.

In this work we study structural control of bilinear systems for
the purpose of applying thesemethods to networks with a bilinear
control structure. We cannot leverage the work by Boukhobza and
Hamelin (2007) on structural observability of bilinear systems,
however, because the nonlinearity of bilinear systems does
not enter the observability criterion, making controllability a
significantly harder problem. Because structural controllability
results rely on classic control results, we have built this work on
top of the most general algebraic bilinear controllability results,
which are known for a class of bilinear systems which have a
single control and such that the input matrix is rank one (Evans
& Murthy, 1977; Goka, Tarn, & Zaborszky, 1973). One of the major
contributions of this work is the collection of intuitive graphical
conditions whichwill bemore easily generalized to a broader class
of bilinear systems. At the same time this class of systems is not
without direct application. Most systems employing regulatory
control schemes are driven by a single controlling source with a
broadcasting (rank one) structure of interaction. For example, the
Federal Reserve sets the national interest rate so as to achieve
market stability in the network of banks and loaning agencies
within the United States.

Most network systems are composed of similar agents (nodes),
and through their interaction the system evolves. Unlike engi-
neered systems, in which, for example, a pump and a valve in a
pipeline system are clear actuation points, these network systems
do not have pre-established points at which control should be ap-
plied. In the network setting we need to design the input con-
nectivity given the structured system so that the system and in-
put together are controllable, a relatively new type of problem we
call control configuration design. Methods for control configura-
tion design exist for linear structured systems and correspond to
selecting the (fewest) nodes in the network to receive exogenous
input (Murota, 2000). Control configuration design for bilinear sys-
tems is, to date, an open question and involves placing additional
(in particular, the fewest) edges with controlled edgeweights such
that the overall system of fixed edges and controlled edges is con-
trollable. In the context of social networks, for example, this would
be equivalent to establishing, removing, strengthening, or weak-
ening interconnections of trust/mistrust among people so that the
opinion of the group as a whole can be influenced.

The contributions of this work are twofold: first, for discrete-
time single-input rank one bilinear systemswe develop equivalent
algebraic and graph-theoretic results for checking structural
controllability, and second, we design an efficient algorithm for
control configuration design for this same class of bilinear systems.
Preliminary versions of these results were published in Ghosh and
Ruths (2014a,b).

2. Background

We consider single-input homogeneous (without a linear
control term) bilinear systems such that the input matrix is rank
one. The state equation of the system is given by

x(t + 1) = Ax(t)+ u(t)Bx(t) (1)

where x(t) ∈ Rn denotes the state of the system and u(t) ∈ R
denotes the control input to the system at time t ∈ N0; A ∈ Rn×n

and B ∈ Rn×n denote the state and input matrices, respectively.
Because we consider input matrices of rank one, the matrix B can
be written as B = chT where c,h ∈ Rn. Thus, an alternate
description of the state equation is

x(t + 1) = Ax(t)+ u(t)chTx(t). (2)

Although select results exist for seemingly broader classes of
bilinear systems, namely for controllability of multi-input and
inhomogeneous systems, all of these results put highly restrictive
assumptions on the form of the system matrices and are thus less
general and interpretable (Evans &Murthy, 1978; Hollis &Murthy,
1981; Tie, Cai, & Lin, 2011). Even though the rank one condition on
B is restrictive, a number of important classes of systems satisfy
this requirement. One such example is the class of bilinear strict-
feedback systems which are a class of nonlinear strict feedback
systems (Khalil, 2002). For example, a strict feedback system of
order 3 can be described by the following set of equations

x1(t + 1) = f1 (x1(t))+ γ1x2(t),
x2(t + 1) = f2 (x1(t), x2(t))+ γ2x3(t),
x3(t + 1) = f3 (x1(t), x2(t), x3(t))+ g3 (x1(t), x2(t), x3(t)) u(t),

where the functions fi(·) (with i = 1, 2, 3) and g3(·) are linear in
their variables; γ1, γ2 ≠ 0. The overall state equation of the system
is then given by (1)whereBhas all rows, except the last one, as zero
rows. Another application of a single-input discrete-time rank-one
bilinear system can be found in the context of wavelength-division
multiplexing (Ishio,Minowa, &Noshu, 1984). The network consists
of three parts: a multiplexer (that works according to the sparsity
ofh), an amplifierwith gain u(t) and a demultiplexer (whichworks
according to the structure of c). Such networks appear the long-
haul transmission where the sensors and actuators are far from
each other and there is a bandwidth constraint of transmission and
reception of data.

2.1. Structured systems

The notion of structured systemswas introduced so that system
properties could be evaluated and studied for systems that had a
particular structure, regardless of the exact parameter values.

Mathematically the structure of structured systems is captured
by matrix entries that are either fixed at zero (i.e., two states
are known to have no direct interaction) or allowed to vary
independently (i.e., the rate of the interaction between two states
is given by an independent parameter). Therefore, in the structured
version of (2) the structured matrices A, c, and h have entries that
are either identically zero (denoted simply as 0) or free, able to take
on any real number (denoted by λi or simply by ∗). An example of
such a structured system is

x(t + 1) =


0 λ1
λ2 0


  

A

x(t)+ u(t)

0
λ3


  

c


λ4 λ5

  
hT

x(t),

where λi ∈ R for i ∈ {1, . . . , 5} is an independent parameter. We
study the properties of these systems in a generic sense; i.e., the
properties under consideration must hold for almost every choice
of these free parameters. We will define this notion in terms of
polynomials and algebraic varieties.

An algebraic variety is the zero set of a finite set of polynomials.
An algebraic variety V ⊂ RN is called a proper variety if V ≠ RN

and nontrivial if V ≠ ∅. A proper variety is one of the standard
sets known to have Lebesguemeasure zero (Polderman &Willems,
1998)

Definition 1. A property (e.g., controllability) is said to hold
generically for a structured system if the set of values of the free
parameters for which the property does not hold forms a proper
algebraic variety.
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Oneof the key advantages of studying structured systems is that
analyzing generic properties tends to be much simpler than their
classical (nonstructured) counterparts. This simplification makes
studying the control related properties of large scale systems, like
complex networks, tractable.

Definition 2. A structured system (2) described by (A, c,hT) is
said to be structurally equivalent to another system (Ā, c̄, h̄T) if
there is a one-to-one correspondence between the locations of
fixed zero and free entries of A and Ā, c and c̄, and h and h̄,
respectively.

Definition 3. A structured system (2) described by (A, c,hT) is
said to be structurally controllable if there exists a nonstructured
triple (Ā, c̄, h̄T) structurally equivalent to (A, c,hT) and is control-
lable using the classic definition.

2.2. Graphical model

The motivation for this work originates from the network
interpretation of bilinear systems. We find that this network
representation not only provides an application for this theory
but also greatly simplifies and facilitates the development and
intuition of the theory itself.

In classic (nonstructured) linear and bilinear systems the state
matrix A can be interpreted as the adjacency matrix of a network
in which there is a connection from node (state) xi to node (state)
xj if Aji ≠ 0. More specifically, the value Aji denotes the weight of
the edge that connects xi to xj. In linear systems the input matrix
encodes the connections from a set of exogenous control signals to
the state nodes. In bilinear systems, however, the input matrix B
encodes connections from one state node (xi) to another (xj) that
have edge weights that can be controlled, i.e., edge weights given
by Bjiu(t).

In structured systems analysis, the dependence of system
properties on the values of the parameters (i.e., the weights
of the edge connectivities) is removed. Therefore, the network
representation is even more appropriate in this context because
the structure of the connectivity is the only relevant factor.

To facilitate our analysis, we introduce a second graphical
model motivated by the B = chT decomposition used in (2) and
capable of being analyzed as a structured linear system (Dion,
Commault, & van der Woude, 2003; Lin, 1974; Reinschke, 1988).
We first define a linear system associated to the bilinear system (2),
following Goka et al. (1973),

x(t + 1) = Ax(t)+ cũ(t) (3)

ỹ(t) = hTx(t)

where ũ(t) and ỹ(t) denote the pseudo-input and pseudo-
observation, respectively.

The directed graph G = (V, E) comprises a vertex set V and
an edge set E ⊂ V × V . In the context of the associated linear
system described by (3), the vertex set V is the union of three sets:
X = {x1, . . . , xn}which denotes the state vertices;U = {ũ}which
denotes the pseudo-input; andY = {ỹ}which denotes the pseudo-
observation. The edge set E is defined as E = EA ∪ Ec ∪ Eh, where
(xi, xj) ∈ EA, meaning there is an edge from xi to xj, if and only if
Aji ≢ 0; (ũ, xj) ∈ Ec if and only if cj ≢ 0; and (xi, ỹ) ∈ Eh if and only
if hi ≢ 0 (we use ≢ 0 to denote that it is a free parameter and not
a fixed zero value). The original bilinear system (1) has a controlled
edge from xi to xj, (xi, xj) ∈ EB, if and only if Bji = cjhi ≢ 0. If
(xi, xi) is in EA or EB it is called a self-loop or controlled self-loop,
respectively.

A large part of the simplification offered by structured systems
comes from the fact that matrix products simplify to walks on
the corresponding graph. A walk W on a graph is a sequence of
nodes and edges such that the end vertex of a preceding edge is
the begin vertex of the next. The length of a walk W is equal to
the number of edges present in the walk. A ℓ-length walk W =

{(w0, w1), . . . , (wℓ−1, wℓ)} is often represented as w0 → w1 →

· · · → wℓ. A walk is a path if it does not contain any repeated
vertices. A walk W is said to be closed if the begin and end vertex
are the same. A closed path is called a cycle. A path is called U-
rooted (Y-topped) if its begin (end) vertex is ũ (ỹ). A number of
mutually disjoint U-rooted (Y-topped) paths is called a U-rooted
(Y-topped) path family. Similarly, a set of disjoint cycles is called
a cycle family. A collection of walks is said to cover all the vertices
in X if every vertex in X belongs to at least one of the walks.

2.2.1. Cacti
The community has introduced the notion of a cactus of a

directed graph to operationalize the notions of the U-rooted or Y-
topped path/cycle families (Dion et al., 2003; Lin, 1974). The cactus
is aminimal subgraph that retains the control-relevant edges of the
underlying linear dynamical system. The cactus representation of
a directed graph effectively assures that every state is reachable
from a control (or analogously that every state can reach the
observation) and that the Kalman rank condition is satisfied.

A cactus consists of at most one stem (a U-rooted or Y-topped
path) and any number of buds, which are cycles that are connected
to from either the stem or from other buds via a distinguished edge.
Several cacti, a collection of mutually disjoint cactus subgraphs,
may be required to cover the entire graph. The cacti representation
of a directed graph can be obtained in polynomial time using the
maximummatching algorithm (Dion et al., 2003; Hopcroft & Karp,
1973). The maximum matching of a directed graph produces a
potentially non-unique collection of paths and cycles that cover
the entire graph from which we can build the cacti (note that the
distinguished edges connecting the buds to other cacti components
are not contained in the matching).

A cactus is by definition a minimal, dilation-free network
structure in which there are no inaccessible nodes (Lin, 1974). The
notion of a dilation is the graphical analog of the generic rank
condition.

Definition 4. A graph G = (V, E) is said to possess a dilation if
there exists a set S ⊂ X of nodes such that |T (S)| < |S| where
T (S) = {xi : (xi, xj) ∈ E, xj ∈ S}; i.e., T (S) denotes the set of nodes
with edges into S.

Remark 5. A dilation can be intuitively described as an expansion
in the network, where the set S ⊂ X is composed only of state
nodes, not control nodes. Constructing cacti for the directed graph
can be understood as the process of adding control (observation)
nodes and edges from (to) these control (observation) nodes in
order that all such expansion points occur at the control nodes.

Remark 6. In the case of a single dilation, there can be at most
one stem, therefore, a single cactus can cover the network. The
implication is, however, one-sided since, for example, if A is a
structured diagonal matrix where each node has a self-loop, then
no stems are present and, therefore, there are no dilations in G(A).

2.3. Objectives

This paper addresses the structural controllability of single-
input rank one discrete time bilinear systems of form (2) by
considering the following problems:
(1) Analysis: given structured matrices (A, c,hT), identify alge-

braic and graph-theoretic conditions that completely describe
the controllability of (2), and

(2) Control configuration design: given a structured matrix A,
identify c and h with minimum number of nonzero entries
such that (A, c,hT) is structurally controllable.
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3. Analysis of structural controllability

Our exact conditions for controllability of single-input rank one
discrete time bilinear systems depend upon two results: control-
lability of structured linear systems and of classic (nonstructured)
bilinear systems.

3.1. Structural controllability of linear systems

A structured linear system is described by

x(t + 1) = Ax(t)+ Bu(t) (4a)
y(t) = Cx(t) (4b)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp denote the state, input, and
measurements of the system, respectively. The matrices A ∈ Rn×n,
B ∈ Rn×m, and C ∈ Rp×n are structuredmatrices such that only the
location of zero and nonzero entries are known.

Definition 7. The generic rank of a matrix M is the maximal rank
that can be obtained by fixing the free entries ofM.

Definition 8. A structured matrix pair (A, B) of compatible
dimensions is said to be reducible if and only if there exists a
permutation matrix P such that the pair (A, B) satisfies

PTAP =


A11 0
A21 A22


, and PTB =


0
B2


.

A reducible system has states that cannot be reached by the
control either directly or indirectly, identified visually by this
partitioning of the states.

The following result establishes algebraic and graph-theoretic
equivalent conditions for structural controllability (and observ-
ability) of linear systems (Dion et al., 2003; Glover & Silverman,
1976; Lin, 1974; Reinschke, 1988; Shields & Pearson, 1976).

Lemma 9. For the linear system (4a) described by the structured pair
(A, B), the following are equivalent:

1. The system (4a) is structurally controllable.
2. The generic rank of [AB] equals n and the pair (A, B) is irreducible.
3. The graphG(A, B) is covered by a disjoint union of aU-rooted path

and cycle families.
4. The graph G(A, B) is covered by a disjoint union of cacti.

We define G(A, B) as the graph G(A) augmented by adding nodes
corresponding to each of the independent controls and connecting
them to the state nodes by the edges indicated in the input matrix
B. Similar results hold for structural observability of (4) with
G(A, B) replaced by G(A, C) and U-rooted replaced by Y-topped.

3.2. Controllability of bilinear systems

By virtue of the inherent multiplication of control and state
terms, the notion of (nonstructured) controllability of bilinear
systems is slightly modified from the linear case, namely by
omitting the origin (Evans & Murthy, 1977; Goka et al., 1973).

Definition 10. The bilinear system (2) described by A, c, and h
is said to be controllable on Rn

\ {0}, if given any initial state
x0 ∈ Rn

\ {0} and a final desired state xf ∈ Rn
\ {0}, one can

design a sequence of control inputs u(0), . . . , u(T − 1) such that
x(0) = x0 and x(T ) = xf for some T ∈ N0.

The most general and approachable algebraic results for
(nonstructured) controllability of bilinear systems exist only for
the class of single input, rank one systems described by (2) (Evans
& Murthy, 1977; Funahashi, 1979; Goka et al., 1973).
Lemma 11. The bilinear system (2) described by A, c, and h is
controllable if and only if the following hold:

1. rank

c · · · An−1c


= rank


h · · · (AT)n−1h

T
= n,

2. The greatest common divisor (g.c.d.) of I equals one where I ,
{j : hTAj−1c ≠ 0, j = 1, . . . , 2n}.

3.3. Structural controllability of bilinear systems

Ourmain result states the controllability conditions for bilinear
systems (2). We define XY as the collection of nodes in X that
have a direct edge to ỹ in G(A,hT); i.e., the set of nodes xi ∈ X
such that (xi, ỹ) ∈ Eh. Define WXYU as the set of all (possibly self-
intersecting) walks from ũ to any vertex in XY of length at most
2n.

Theorem 12. For the bilinear system (2) described by the structured
triplet (A, c,hT), the following are equivalent:
1. The system (2) is structurally controllable.

2a. The generic rank of M ,

A c
hT

∗


equals n+1; (A, c) and (AT,h)

are irreducible.
b. The greatest common divisor (g.c.d.) of I equals one where I ,

{j : hTAj−1c ≢ 0, j = 1, . . . , 2n}.
3a. G(A, c) and G(A,hT) are respectively covered by a disjoint union

of a U-rooted and Y-topped path and a cycle family.
b. There exists a collection of walks of coprime lengths in WXYU.

Theorem 12 characterizes the structural controllability of single-
input, rank one bilinear systems in terms of algebraic (part 2) and
graph-theoretic (part 3) conditions. The structural controllability
of bilinear systems depends on two factors: the controllability and
observability of the associated linear system (3), which is given by
parts 2a or 3a, and the existence of a coprimeness property, which
is given by part 2b or 3b.

Remark 13. One of the implications of the condition 2a is that
A must have generic rank of at least n − 1. This implies by way
of Remark 6, which says that G(A) has a single dilation if A has
rank n − 1, that a single cactus covers the graph. This constraint
is imposed because the system has a single input. To achieve
controllability each stem must receive input from a different
control. Since (2) has only one independent control, there can be
at most one stem and so one cactus.

Part 3a is also equivalent to the following.

3a′. The graphs G(A, c) and G(A,hT) are spanned by a cactus rooted
in U and topped by Y, respectively.

Since the linear algebra (2a, 2b) and the graphical (3a′,
3b) conditions are equivalent (with comparable computational
complexities), the primary advantage of the graphical approach
is that it provides greater intuition to the problem (thereby more
easily generalized) and that networks provide a more natural
representation of the system.

Remark 14. Checking the controllability and observability is
dominated either by checking the rank of a matrix (2a), which
(Bunch & Hopcroft, 1974) identifies as equivalent to matrix
multiplication, O(n3), or by the maximum matching (3a′), where
the (Hopcroft & Karp, 1973) algorithm runs in O(L

√
n), L = |E |

is the number of edges in the graph. Improvements on matrix
multiplication can yield complexities lower than O(n2.376) and
maximum matching on sparse graphs run in less than O(n2.5)
(Coppersmith &Winograd, 1990). Checking for coprime paths uses
4n matrix–vector products, leading to a complexity bounded by
O(n3). A direct graphical method for determining the existence of
coprime paths in a network is part of our ongoing work.
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a

b

Fig. 1. (a) The directed graph of the four-state example bilinear system and (b) the
directed graph corresponding to the associated linear system, with pseudo-input ũ
and pseudo-output ỹ.

A special case of this result exists if the state matrix A has
generic rank n and the corresponding graph G(A) is strongly
connected. In such a situation, the presence of just a single self-
loop in the graph (i.e., Aii ≢ 0 for some i ∈ {1, . . . , n}) grants that
the triplet (A, c,hT) is structurally controllable for any non-zero c
and h (if c or h is zero, then that would imply B = 0 which would
make the system uncontrollable for any input).

Proposition 15. Suppose G(A) is strongly connected, A is of generic
rank n, and (xi, xi) ∈ EA for some i ∈ {1, . . . , n}. Then the bilinear
system described by (2) is structurally controllable for any structured
c and h such that B = chT

≢ 0.

If in addition G(A) has self-loops on all nodes, i.e., Aii ≢ 0 for
all i ∈ {1, . . . , n}, then A automatically has full generic rank.
This proposition automatically applies to connected undirected
(bidirectional) graphs, since every connected undirected graph is
strongly connected. Examples of such graphs occur frequently in
multi-agent consensus problems (Jadbabaie, Lin, & Morse, 2003;
Xiao & Boyd, 2004).

3.4. Example

To help illustrate the important aspects of Theorem12, consider
the four-state bilinear system in Fig. 1:

x(t + 1) =

 0 0 0 0
λ1 0 0 0
λ2 0 0 λ4
0 0 λ3 λ5


  

A

x(t)

+ u(t)

λ600
0


  

c


0 λ7 λ8 0

  
hT

x(t),

such that the parameters λi ∈ R for i = 1, . . . , 8. The
graphical representation of the associated linear system is also
shown in Fig. 1 and given by G = (V, E) with the vertex set
V = X ∪ U ∪ Y with X = {x1, x2, x3, x4}, U = {ũ}, and
Y = {ỹ}. The edge set E is the union of the edge sets EA =

{(x1, x2), (x1, x3), (x3, x4), (x4, x3), (x4, x4)}, Ec = {(ũ, x1)}, and
Eh = {(x2, ỹ), (x3, ỹ)}. It can be easily seen that G(A) has one self-
loop on node x4. The structures of c and h indicate there are two
controlled edges in the network (the dashed lines in Fig. 1).

First, note that the generic rank of A equals 3 which is equal
to n − 1. However the structures of c and h guarantee that M
has full generic row rank. Furthermore, both (A, c) and (AT,h) are
irreduciblewhich tells us that (A, c) is structurally controllable and
(A,hT) is structurally observable. Alternatively, one can deduce
this from the directed graph G. For example, G(A, c) contains a
U-rooted cactus, which includes all edges except the self-loop on
x4. Similarly, G(A,hT) can be shown to contain a Y-topped cactus,
including all edges except (x1, x3) and (x4, x4). These clearly satisfy
the conditions listed in part 3a′ of Theorem 12.

Similarly it can be observed that hTc = 0, hTAc = (λ1λ7 +

λ2λ8)λ6 ≢ 0, hTA2c = 0, hTA3c = λ2λ3λ4λ6λ8 ≢ 0 and hTA4c =

λ2λ3λ4λ5λ6λ8 ≢ 0. Thus, 2, 4, 5 ∈ I and hence gcd(I) = 1, which
satisfies the condition 3b of Theorem 12. Alternatively, this can be
deduced from the fact that there exist walks W1 = ũ → x1 → x2
and W2 = ũ → x1 → x3 of length 2, W3 = ũ → x1 → x3 →

x4 → x3 of length 4, and W4 = ũ → x1 → x3 → x4 →

x4 → x3 of length 5with x2, x3 ∈ XY , which have coprime lengths.
Since the algebraic and graphical conditions listed in Theorem 12
are satisfied, this system is structurally controllable. For instance,
consider the realization in which λ = 1. It can be easily seen
that (A, c) is controllable and (A,hT) observable since the both
the associated matrices have full rank. Furthermore, hTc = 0,
hTAc = 2, hTA2c = 0, and hTA3c = hTA4c = 1 imply that
2, 4, 5 ∈ I and thus, gcd(I) = 1.

If the self-loop (x4, x4) is removed, the associated linear system
is still both structurally controllable and observable. However, the
set I now containswalks of only even lengths (e.g., 2, 4, . . .), which
are not coprime to each other. Therefore, part 2b (or part 3b)
of Theorem 12 fails and the bilinear system is not structurally
controllable.

4. Control configuration design

In the previous section we developed the exact conditions
required for structural controllability of single-input, rank one
bilinear systems. Many natural systems, however, especially in
the context of large networks, do not automatically have an
associated set of controls with known connectivity. In this section,
we now use our controllability conditions to devise an algorithm
to generate the placement of a minimum number of edges that
must be added to guarantee structural controllability. We call this
procedure control configuration design for single-input, rank one
bilinear systems described in (2).

Given the sparsity structure ofA (locations of fixed interconnec-
tions between the states/nodes), our objective is to design c and h
with maximum sparsity (having maximum zeros, or equivalently,
the fewest controlled edges) so that the overall system described
by (A, c,hT) is structurally controllable. Recall that a connection ũ
to xj implies that cj ≢ 0; i.e., cj is set to be a free parameter. Sim-
ilarly, connecting xi to ỹ is equivalent to making hi ≢ 0. Selecting
the nonzero entries in c andh is equivalent to constructing the cac-
tus for G(A, B) and guaranteeing the coprimeness condition. We
are aided in this goal by the fact, established in Remark 13, that
single-input bilinear systems must be covered by a single cactus,
i.e., one stem and any number of buds.

The following procedure formalizes the process of assigning the
attachment of cycles in the matching to the final cactus structure.
As we will see, the number of controlled edges in the final control
configuration isminimized by aggregating together asmany cycles
as possible.

(1) Obtain a maximummatching for the graph G(A), which in this
case is composed of at most one stem with any number of
cycles. Let MA denote the collection containing the stem and
cycles given by the matching.

(2) Create a new graph of matching components (stem and cycles)
G(MA), which collapses each matching component Mi into a
single node mi. An edge exists from mi to mj if there exists an
edge from one of the nodes in Mi to one of the nodes in Mj in
the original graph G(A).
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Fig. 2. A schematic of the spanning forest G(MA) or G(MAT ), where matching
components (stem and cycles) of G(A) or G(AT) are collapsed into nodes. The black-
filled nodes are the roots of the spanning forest. If a stem is present in the matching
it must be the root of one of the trees of the forest. This forest has 3 trees.

(3) Find a spanning forest of G(MA)with the minimum number of
trees and with the stem (if one exists) as the root of one of the
trees. Effectively this spanning forest ismeant to determine the
minimum number of components in G(MA) by selecting the
appropriate distinguished edges with which to connect buds
to the stem and to other cycles; each of these components will
require a controlled edge.

(4) We now formalize our final notation: SA is the single stem,
located at the root of one of the trees;RA are the cycles located
at the root of the rest of the trees; and BA are the rest of the
cycles. A diagram of a simple such spanning forest is shown in
Fig. 2.

(5) Although we could calculate the matching directly for the
reverse graphG(AT), the single cacti constraint forces SAT = SA
(with the edge orientation reversed). Cycles of the matching of
G(A), therefore, will still be cycles in the matching of G(AT),
thus MAT = MA. However, because the edge orientation is
reversed, G(MAT) is different and so the spanning forest with
a minimum number of trees is also different. As before we
identify RAT and BAT from the spanning forest of G(MAT).

With these sets defined, we now identify the placement of
the controlled edges to complete the control configuration design
algorithm.
(6) If the cactus of G(A) has a stem, let its length be ℓ − 1 and

connect ũ to the base node (say xj) and ỹ from the top node
(say xi) of the stem, i.e., set cj and hi to be free parameters.
Ultimately, to satisfy the covering condition (all nodes can be
reached by the control and can reach the observation) each
tree in the two spanning forests mentioned above must be
connected to the control and observation. However, to also
satisfy the coprimeness condition,weproceed according to one
of the following cases:

I. Spanning forests both have exactly one tree, with stem as
the root: Since all nodes are contained in the stem and the
cycles connected from the stem, connecting ũ and ỹ as above
guarantees that all nodes are reachable from ũ and can reach
ỹ. To check the coprime walk condition, let I = {k : Ak−1

ij ≢ 0,
k = 1, . . . , 2n}. If gcd(I) = 1, then the condition is naturally
satisfied. Otherwise add a single extra edge from the bottom
node of the stem, xj, to ỹ. This inserts a controlled self-loop at
xj, ũ → xj → ỹ, which satisfies the coprime walk condition
since gcd(ℓ, 1) = 1 (ℓ is the length of the walk from ũ to the
neighbor set of ỹ, XY).

Note that this procedure also addresses the casewhen there
is only a stem and no cycles.

II. Common root cycle in spanning forests: If there is at least one
cycle that is a root in both spanning forests, i.e., C ∈ RA and
C ∈ RAT , choose any node (say xk) of such a cycle and connect
ũ to xk and xk to ỹ. This adds a controlled self-loop in the system
which again satisfies the gcd condition.

To satisfy the covering condition, also connect ũ to any node
in each of the rest of the root cycles RA and connect ỹ from any
node in each of the rest of the root cycles in RAT .

If there is no stem in the matching but a cycle is a root in
both spanning forests, this case applies without modification.
Fig. 3. The coprimeness condition is satisfied by selecting the appropriate rth node
in the cycle and winding around the bud C ∈ RAT once.

III. No common root cycle in spanning forests: Select a cycle
C ∈ RAT that is a root in the spanning forest of G(MAT), but not
a root in the spanning forest of G(MA), C ∈ BA. Let C0 ∈ RA
be the root of the tree that contains C. Connect the control ũ to
any node in the cycle C0, let k be the distance from ũ to the end
vertex (say xp ∈ C) of the distinguished edge connecting to C,
and let c be the length of the cycle C.

A simple algebraic exercise reveals the fact that gcd(k +

r, k+r+c) = 1 coincideswith gcd(k+r, c) = 1. Furthermore,
an inductive argument shows that there always exists a r ∈

{0, . . . , c − 1} such that gcd(k + r, c) = 1, which states that
in any interval of c integers there is a number that is coprime
with c. In the context of this problem, these facts taken together
prove that the rth node in the cycle C (starting from xp as the
0th node) can be selected such that the length of the walk from
ũ to xp to the rth node (k + r) is coprime to the length of the
walk from ũ to xp, around the cycle once, and then to the rth
node (k + c + r). Therefore, by connecting the rth node to ỹ
we guarantee the coprime path condition. This is diagramed in
Fig. 3.

To satisfy the covering condition, also connect ũ to any node
in each of the rest of the root cycles RA and connect ỹ from any
node in each of the rest of the root cycles in RAT .

If there is no stem in the matching and there is no cycle that
is a common root in both spanning forests, this case applies
without modification.

The case where C is a root in the spanning forest of G(MA),
C ∈ RA, but is not a root in the spanning forest of G(MAT),
C ∈ BAT , is treated identically, however, the roles of ũ and ỹ
are reversed.
Our goal is to guarantee two sets of conditions: controllability

and observability of the associated linear system and the
coprimeness condition. The former is done by connecting ũ to
and ỹ from the roots of the respective spanning forests. Assume
that the number of trees in the spanning forest of G(MA) is nc
and that in the spanning forest of G(MAT) is nh. In other words,
at minimum nc interconnections are required from ũ (nh to ỹ) to
guarantee the controllability (and observability) of the associated
linear system. Thus, the minimum number of controlled edges
required to guarantee the controllability of the overall bilinear
system would be ncnh (or equivalently, the number of non-zero
entries in B). What we find is that bilinear systems are relatively
easy to control, in the sense that most of the cases above attain
this minimum evenwhen the coprimeness condition is tested. The
exception is Case I, in which only a single extra controlled edge (a
self edge) may be required to satisfy the coprime walks. Note that
for Case I the number of required controlled edges is either 1 or
2, so even in this case the coprimeness condition does not cause
significant effect on the size of the control configuration.

Remark 16. Self-loops can play a dramatically simplifying role
in the control of bilinear systems. Once the conditions of
controllability and observability of the associated linear system
are satisfied, the presence of a self-loop (either in the existing
or controlled interconnections) directly satisfies the coprimeness
condition because any path traveling through the node with a self-
loop can simply be extended by a single edge (and since gcd(k, k+

1) = 1). For a controlled self-loop, a path of unit length exists,
which automatically satisfies the coprimeness condition.
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Fig. 4. A 15 node network showing (a) the original graph (b) the resulting control augmented graph of the associated linear systemwhere the bold edges show thematching
components, red and blue edges represent distinguished edges for the cacti of G(A) and G(AT) respectively. The green edge is the distinguished edge common to both of
these cacti. (c) the resulting control augmented graph G(A, B) of the original system. Dashed arrows indicate controlled edges added to the graph. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Remark 16 provides a convenient shortcut to the control
configuration algorithm if self-loops exist in the network. In
order to guarantee controllability of the bilinear system in Case I
without checking the coprimeness condition, only one additional
controlled edge is required. Itmaybeworthwhile, then, to compare
the computation time of checking the coprime path condition to
the cost of inserting another controlled edge in the network.

4.1. Example

Consider the 15 node network as shown in Fig. 4. Themaximum
matching on G(A) yields a stem SA comprised of the nodes
(x1, x2, x3, x4, x5, x6); two buds directly attached from the stem
namely,C1 = (x7, x8, x9) andC2 = (x10, x11, x12, x13); and the bud
C3 = (x14, x15) attached from the cycle C2 via the edge (x12, x14).
The spanning forest of G(MA) has one tree rooted in SA.

The components for G(AT) are the same, only with the edge
orientation reversed. In terms of visualization in Fig. 4 it is easier
to just view the graph ‘‘from the top’’ rather than to reverse the
edges. While the edge (x3, x10) connects from the stem SA to the
bud C2 (and in turn C3), a different distinguished edge (x15, x6)
connects from SAT to C3 (and in turn C2). Because C1 ∈ RAT has
no distinguished edge from SAT , the spanning forest of G(MAT) has
two trees.

This network is an example of Case III. Therefore, to control the
linear system associated with G(A), an edge must be added from
the pseudo-input ũ to x1. The edge (ũ, x1) connects ũ to all the
nodes since there is a single tree in G(MA). To observe the linear
system it is necessary to obtain observations from the roots of both
of the trees in the spanning forest of G(MAT). We connect to ỹ from
the top of the stem SA (from node x6) and from one of the nodes in
C1. Note that the top of SA is the bottom of SAT . There will be two
edges to ỹ and one from ũ, yielding two controlled edges.

There is ambiguity in which node in C1 is connected to ỹ,
however, we can use the coprimeness requirement to help make
this choice. In this case the end vertex of the distinguished edge
is xp = x7; the length of the path from ũ to x7 is 6. We note that
x7 is not a candidate because the length of the cycle is c = 3
and so any path from ũ to x7 will always be a multiple of 3. Either
other node in C1 will satisfy the coprimeness condition, therefore,
we connect x8 (i.e., r = 1) to ỹ, which creates paths of length
7 (no times around C1) and 10 (one time around C1). Thus the
bilinear network becomes controllable with just two controlled
edges, namely (x6, x1) and (x8, x1).

Although structural controllability analyzes systems based
on structure alone, we now demonstrate the general utility of
structural control configuration design by synthesizing a control
signal to drive the system from an initial state to a target state.
In order to do so, we generate a realization of the system
with numerical edge weight values. For this scenario we select
parameters arbitrarily, setting all edges to be unit value except
for A7,9 = −1, A5,4 = A10,13 = A15,14 = 2, A13,12 = 3;
we take T = 15 to be the total number of steps; and set initial
and target states as x0 = [1, . . . , 15] and xf = [15, . . . , 1].
We formulate an optimal control problem that seeks to minimize
the sum of squared input values, J =

T−1
t=0 u2(t) over a time

horizon T subject to initial, x(0) = x0, and final, x(T ) = xf ,
endpoint constraints. Since the bilinear system is a discrete-time
system, the optimal control problem is a constrained nonlinear
programming problem and can be solved with a variety of open-
source and commercial solvers. Fig. 5 presents the optimal control
input – the time-varying edgeweight for edges (x6, x1) and (x8, x1)
– that drives the system between the desired stateswithminimum
power. If all edge weights in G(A) are instead set to unit value,
this realization is uncontrollable because this parameter vector
λ = 1 lies in the Lebesgue measure zero set (proper variety) of the
uncontrollable subspace. So although there are specific realizations
for which the output of the control configuration design will fail,
the set of such realizations lies within a proper variety of the
parameter space. In general these pathological cases are more
highly nuanced (requiring interdependencies between the values
of parameters) than realizations found in physical systems.

5. Conclusions

In this work we have developed both algebraic and graph-
theoretic conditions for the structural control of single-input, rank
one bilinear systems. In addition, we have used these conditions
to develop an algorithm to design the minimal (fewest controlled
edges) control configuration for a bilinear network.We find that, in
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Fig. 5. The 15 node network in Fig. 4 with controlled edges added using our
control configuration design algorithm is driven by u(t) from an initial state x0 =

[1, . . . , 15] to a final state x1 = [15, . . . , 1] in T = 15 steps, starting at t = 1. States
are colored in different shades of gray to identify that the states have reversed state
values.

general, bilinear systems are relatively easy to control in that very
few edges need to be added to gain full controllability.

Recent theoretical advances in the control of bilinear systems
has been limited to systems with special structure. We believe
that the graphical conditions for controllability will help to gain
the intuition required to devise conditions for more general
structured and non-structured bilinear systems. In particular, we
are interested in investigating the controllability (both structured
and unstructured) and control configuration design for multi-
input bilinear systems. A preliminary class of multi-input systems
where all the input matrices are of rank one, is currently under
investigation.

Appendix. Proof of technical results

In this section, all the lemmas required for the proof of
Theorem12 and other technical details are presented.Wewill start
by discussing dilations and proving a few interesting results about
them. First we introduce the new concept of an atomic dilation for
a subset S ⊂ X.

Definition 17. Let S ⊂ X and U be any proper subset of S. Then,
the set S is said to possess an atomic dilation if S contains a dilation
but U does not contain one. In such a case, we say that G(A)
contains an atomic dilation.

An atomic dilation set S is the ‘‘smallest set’’ that contains a
dilation. Although it is stated in the literature that a dilation in a
graph is equivalent to a rank deficiency in the structured adjacency
matrix A, to our knowledge this fact is not formally captured in
any paper (Johnston, Barton, & Brisk, 1984). The following lemma
formalizes this statement for the case of a single atomic dilation.

Lemma 18. The generic rank of a n×n structured matrix A is n−1 if
and only if the associated directed graph G(A) has exactly one unique
atomic dilation.

To prove Lemma 18, we need the following which relates
atomic dilations to parent sets of nodes.

Lemma 19. For each atomic dilation set S, we have |T (S)| = |S|−1.
Proof. Assume S contains an atomic dilation. By definition, then,
|T (S)| < |S|. Assume |T (S)| ≤ |S| − 2. Note that T (S) contains
all the nodes which have edges incident to any node in S. Now
consider a new set S̃ formed by removing a node (any node) from S
so that |S̃| = |S|−1. Let T (S̃) be the corresponding incident set for
S̃. Since S̃ ⊂ S, we have T (S̃) ⊆ T (S), and thus |T (S̃)| ≤ |T (S)| ≤

|S| − 2 < |S̃|. Thus, S̃ contains a dilation, which is a contradiction
with the definition of an atomic dilation. �

Wenowpresent a proof of Lemma18 that dealswith the unicity
of atomic dilations and rank deficiency of structured matrices.

Proof of Lemma 18. First, assume that G(A) contains a unique
atomic dilation set S ⊆ X. Because a nonzero entry in the jth
column of A indicates that xj has an incident edge to a node, we can
use Lemma19 to show thatA|S has atmost |S|−1 nonzero columns
and thus, a generic rank of at most |S| − 1. Let us define A|S as the
matrix comprised of rows of A restricted to the nodes (states) in S.
If S is a singleton, then A|S = 0 is a zero row, and this immediately
proves that the generic rank ofA|S is 0 = |S|−1. Assume S contains
more than one element and consider a set {xi} ⊂ S. Because S is
an atomic dilation set, the proper subset {xi} does not possess a
dilation, and so the xith row must have at least one nonzero entry.
Since xi was arbitrary, every row in S contains at least one nonzero
entry. If |S| = 2, then one can easily deduce by this argument
that A|S has exactly one nonzero column and therefore, possesses
a generic rank of one. However, if |S| > 2, one can then consider
a proper subset {xi, xj} ⊂ S. Since again this set does not contain
a dilation, there will be at least two nonzero columns in A|{xi,xj} in
addition to the fact that the xith and xjth rows contain at least one
nonzero entry each. This implies that the generic rank of A|{xi,xj}
equals 2. An induction argument then gives us that the generic rank
of every subset R of S having |S|−1 elements is exactly |S|−1. Thus,
the generic rank of A|S is equal to |S|−1. Using a similar argument,
one can then deduce that the generic rank of A|X\S equals |X \ S|.
Also, any proper subset of rows of A|S is linearly independent to
the rows in A|X\S (otherwise that will contradict with the unicity
of S). This implies that the generic rank of A is n − 1.

On the other hand, assume that the generic rank of A is n − 1.
Identify the smallest set S ⊆ X such that A|S contains linearly
dependent rows but the rows in any of the proper subsets of S are
linearly independent. If S = {xi} for some xi ∈ X, then obviously
A|S = 0 and hence, S is an atomic dilation set. Else, consider a set
{xi} ⊂ S. Since A|{xi} is linearly independent, the xith row contains
at least one nonzero entry. Again an induction argument shows
that no proper subset of S contains a dilation. In particular every
subset R ⊂ S of |S|−1 entries has at least |S|−1 nonzero columns.
In other words, |T (R)| ≥ |R| ≥ |S| − 1. This coupled with the fact
that A|S contains a set of linearly dependent rows then gives us
that |T (S)| = |S| − 1. So, S is an atomic dilation set. One can then
use a set-theoretic argument to show that S is unique since if there
are two atomic dilation sets S and P , then S ∪ P will have at least
two dilations and correspondingly the generic rank of A would be
at most n − 2 leading to a contradiction. �

Now, assume that the number of non-zero elements in A, c,
and h be NA, Nc , and Nh, respectively, with N = NA + Nc + Nh
the total number of non-zero elements. Thus, every collection of
nonzero entries in the triplet (A, c,hT) represents a point in RN

and consequently, a set of parameters for the system. Therefore,
RN denotes the parameter space for the system.

The following lemma characterizes the condition for the
genericity of the property of structural controllability; i.e., it says
that structural controllability of a system is equivalent to the fact
that all the uncontrollable sets of parameters forma set of Lebesgue
measure zero.
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Lemma 20. The system (2) described by the structured triplet
(A, c,hT) is structurally controllable if and only if all uncontrollable
triplets that are structurally equivalent to (A, c,hT) lie on a proper
variety in RN .

Proof. Let λ = [λ1 · · · λN ]
T be a parameter vector associatedwith

(A, c,hT). Let I ⊂ {1, . . . , 2n} be defined as the set such that j ∈ I
whenever hTAj−1c ≢ 0; i.e., I , {j : hTAj−1c ≢ 0, j = 1, . . . , 2n}.
Note that whenever 1 ∈ I , gcd(I) = 1 automatically. Define S as
the set of all sets of coprime integers between 2 and 2n; i.e., S =

{{i1, . . . , ik} : gcd{i1, . . . , ik} = 1, {i1, . . . , ik} ⊂ {2, . . . , 2n}, k ∈

{2, . . . , 2n}}. Define the following polynomials:

ψ1(λ) = det

[c Ac · · ·An−1c]

2
;

ψ2(λ) = det

[h ATh · · ·


ATn−1 h]

2
;

ψ3(λ) = (hTc)2 +


{i1,...,ik}∈S

(hTAi1−1c)2 · · · (hTAik−1c)2.

Assume that there exists a controllable (A, c,hT); i.e., there exists a
λ ∈ RN such that the associated system is controllable. In that case
as Lemma 11 states, (A, c) is controllable which implies ψ1(λ) ≢

0; (A,hT) is observable which implies ψ2(λ) ≢ 0; and gcd(I) = 1.
The last condition implies that there exists a set of coprime integers
I between 1 and 2n such that for every j ∈ I , hTAj−1c ≢ 0.
Thus, either 1 ∈ I or I ∈ S. Therefore, either (hTc)2 ≢ 0 or
there exists an {i1, . . . , ik} ∈ S with k ∈ {2, . . . , 2n} such that
(hTAi1−1c)2 · · · (hTAik−1c)2 ≢ 0 which implies that ψ3(λ) ≢ 0.
Therefore,ψ(λ) , ψ1(λ) ·ψ2(λ) ·ψ3(λ) is such thatψ(λ) ≢ 0. In
other words,ψ(λ) = 0 (which defines the set of all uncontrollable
parameters) defines a proper variety.

Conversely, assume thatψ(λ) = 0defines a proper variety. This
implies that there is a λ ∈ RN such that ψ1(λ) ≢ 0 which implies
corresponding (A, c) is controllable; ψ2(λ) ≢ 0 which implies
that (A,hT) is observable; and ψ3(λ) ≢ 0 which implies that the
coprimeness condition is satisfied. Hence, the resulting system is
structurally controllable. �

Before introducing the next lemma, which deals with the
generic rank of a matrix, we need to define the concept of linear
dependence of structured vectors.

Definition 21. Let {v1, . . . vk} be a set of structured vectors of
dimension n (with k ≤ n). The set is said to be generically linearly
independent if and only if the generic rank of the k × n matrix
V = [v1 · · · vk] equals k.

In other words, the set of n-dimensional structured vectors
v1, . . . , vk is generically linearly dependent if and only if, for almost
every set of parameter values, there exist constantsα1, . . . , αk ∈ R
not all zero, such that α1v1 + · · · + αkvk = 0.

Lemma 22. The generic rank of M =


A c
hT

∗


equals n + 1 if and

only if the generic ranks of [A c] and [AT h]
T both equal n.

Proof. First assume that the generic rank of M equals n + 1.
This implies that all the rows (and columns) of M are generically
linearly independent which in turn implies that the generic ranks
of [A c] and [AT h]

T (obtained by removing the last row and column,
respectively) both equal n. Conversely assume that both [A c] and
[AT h]

T both have generic rank n. Then the generic rank of A is at
least n−1. If the generic rank ofA equals n, then the free parameter
in the (n+1, n+1)position ofM guarantees that the generic rank of
M equals n + 1. On the other hand, if the generic rank of A equals
n − 1, then c must be generically linearly independent to all the
columns ofA. This in turn implies that [cT ∗]

T is generically linearly
independent to all the columns of [AT h]

T. Since the columns of
[AT h]

T are all generically linearly independent by assumption, the
[cT ∗]

T column makes the generic rank ofM equal n + 1. �
The following lemma characterizes the generic coprimeness
condition on the set I (defined in Theorem 12) in terms of walks
from U to XY in the directed graph of the system. It states that
gcd(I) = 1 is equivalent to the fact that there are closed walks
of coprime lengths in G(A, B) formed by edges in EA, each with
exactly one controlled edge.

Lemma 23. With I defined as in Theorem 12, the gcd(I) = 1 if and
only if either there exists a collection of walks of coprime lengths in
WXYU.

Proof. The fact that gcd(I) = 1 implies that there exist integers
ℓ1, . . . , ℓk ∈ I such that gcd({ℓ1, . . . , ℓk}) = 1. Therefore,
we have that hTAℓ1−1c ≢ 0, . . . ,hTAℓk−1c ≢ 0. That is there
exist pairs of integers (i1, j1), . . . , (ik, jk) such that hj1A

ℓ1−1
j1 i1

ci1 ≢

0, . . . ,hjkA
ℓk−1
jk ik

cik ≢ 0 generically. Consider the fact that

hj1A
ℓ1−1
j1i1

ci1 ≢ 0. Since Aℓ1−1
j1 i1

is a scalar, this is equivalent to the
fact that ci1hj1 ≢ 0, so (ũ, xi1) ∈ Ec and (xj1 , ỹ) ∈ Eh, and that
there exists a sequence of nodes p0, . . . , pℓ1−1 ∈ X which form
a walk W1 defined as ũ ∈ U → xi1 = p0 → p1 → · · · →

pℓ1−1 = xj1 ∈ XY of length ℓ1. Therefore,W1 ∈ WXYU. Also, ℓ1 ∈ I
implies that ℓ1 ≤ 2n. Using a similar procedure we can construct
walks W2, . . . ,Wk ∈ WXYU of lengths ℓ2, . . . , ℓk, respectively.
Since gcd({ℓ1, . . . , ℓk}) = 1, the walks are coprime. �

The final result of this section shows that if (A, c) is structurally
controllable or (A,hT) is structurally observable, the set I is not
empty. In fact there exists an integer k ≤ n such that k ∈ I;
i.e., there exists at least one walk of length less than or equal to
n satisfying the conditions in the previous lemma. This is due to
the fact if (A, c) is structurally controllable (if (A,hT) is structurally
observable) then ũ is connected to (ỹ is connected from) every
vertex in X, thus there exists at least one walk from ũ to ỹ.

Lemma 24. Under the condition that (A, c) is structurally control-
lable or (A,hT) is structurally observable, there exists a k ≤ n such
that k ∈ I .

Proof. First assume that (A, c) is structurally controllable. Then
the generic rank of [c Ac · · · An−1c] equals n. This is equivalent
to saying that for any structured row vector hT such that h ≢ 0,
hT

[c Ac · · · An−1c] is not zero identically. In other words, there
exists at least one k ∈ {1, . . . , n} such that hTAk−1c ≢ 0, and
hence k ∈ I . The proof for the situation when (A,hT) is observable
is almost identical. �

This result also implies the fact that under the assumption of
controllability and/or observability of the associated linear system,
the set WXYU defined using the graph of the bilinear system is
nonempty.

A.1. Proof of Theorem 12

Proof of 1 ⇔ 2. The structural controllability of the structured
triplet (A, c,hT) is equivalent to saying that the generic ranks of
[c Ac · · · An−1c] and [h ATh · · · (AT)n−1h] both equal n, and
gcd(I) = 1. The generic rank conditions are equivalent to saying
that (A, c) is structurally controllable and (A,hT) is structurally
observable. Using the results from Dion et al. (2003), Shields and
Pearson (1976), alternatively one can say that the generic ranks of
[A c] and [AT h]

T equal n and that (A, c) and (AT,h) are irreducible.
Using Lemma 22, this is equivalent to the fact that the generic
rank ofM equals n+ 1 and that the irreducibility and coprimeness
conditions hold true.

Proof of 2 ⇔ 3. The first part of the equivalence follows from
Lemma 22 and the results in Dion et al. (2003), Reinschke (1988).
The second part of the equivalence follows from Lemma 23. �
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We finish off Appendix by presenting a sketch of the proof
of Proposition 15 which deals with the special case of strongly
connected graphs.

Proof of Proposition 15. Since A is of full rank, the generic rank
conditions stated in 2a of Theorem 12 are automatically satisfied.
Also, the strong connectedness of A automatically satisfies the
irreducibility conditions for (A, c) and (AT,h). This also guarantees
that node xi (with the self-loop; i.e., Aii ≢ 0) lies on one of walks
from ũ to ỹ. One can easily construct twowalks by ignoring the self-
loop and by counting the self-loop once which differ in length by
one and, therefore, are coprime to each other. Thus, the structured
bilinear system is structurally controllable. �
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