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Abstract— We provide the necessary and sufficient condi-
tions for structural controllability of discrete-time single-input
bilinear systems with an input matrix of rank one. These
come in the form of two equivalent conditions: one involves
checking the generic rank and irreducibility of structured
system matrices, and the other involves checking for walks
within the corresponding directed graph representation of the
system connectivity.

I. INTRODUCTION

The topic of structural control has resurfaced due to recent
developments in the control of complex networks - see [1]
and the references therein. Structural control, which provides
tools to analyze systems on the level of connectivity (i.e.,
parameter-independent), offers two key advantages over clas-
sical results in control theory. Due to the sheer size of real-
world networks, it is difficult (or impossible) to accurately
survey the parameters that govern their dynamics. Moreover,
the values of these parameters are likely to change over
time because many of these networks are influenced by their
environments, e.g., biochemical, ecological, organizational,
and social networks are typically not as static as engineered
systems. Secondly, again due to the size of these systems,
structural methods provide an attractive alternative to the
more computationally costly conventional control methods.

Work on structured systems has almost exclusively fo-
cused on the topic of linear systems [2]–[6]. Because of this,
research on the control of complex networks has been limited
to considering linear systems with exogenous inputs [1], [7].
However, in many cases it is both more appropriate and more
feasible to consider controlling the edges of the network
rather than imposing an external control. For example, in
biochemical networks, medical drugs offer the ability to
block the interactions between proteins (i.e., modulate the
edges of network), but directly adjusting the concentration
of specific proteins (i.e., directly controlling a node of the
network) is a much more difficult and invasive procedure.
The notion of controlling edges in a network is best captured
by a model with bilinear dynamics.

Bilinear systems are a class of nonlinear systems such that
the system dynamics are linear in state for fixed external
inputs and linear in inputs for fixed states. Bilinear models
have been used to describe a variety of real-world systems
such as switched circuits, population growth models, social
networks, power transmission lines, and quantum spin dy-
namics [8]–[11]. While the observability of bilinear systems
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[10], [12] has been characterized completely, an exact char-
acterization of controllability of such systems is still an open
question [9]. In contrast to linear systems, the controllability
of a bilinear system is not a property dual to observability
and, therefore, requires deeper analysis. Nevertheless, several
sufficient conditions for controllability of bilinear systems
are available [13]–[15]. The most complete characterization
of controllability with algebraic conditions is known for
discrete-time bilinear systems with a single input and where
the input matrix is of rank one [16]–[18]. Conditions are
known for a class of unconstrained bilinear systems without
a rank restriction, however, these rely on Lie Algebra [9].

For structured bilinear systems, similar to above, only
observability analysis has received attention [19], [20]. Con-
trollability analysis of structured bilinear systems is absent
from the literature.

Leveraging on the algebraic conditions that exist for
unstructured bilinear systems, in this paper, we present two
equivalent, easily verifiable characterizations of controllabil-
ity of structured discrete-time homogeneous bilinear systems
with rank-one input matrices. The first characterization is
algebraic in nature and involves checking the generic rank
and irreducibility of system matrices similar to the ones
required for linear systems with some additional conditions.
In addition, we develop a set of equivalent graph-theoretic
characterizations of controllability that involves checking for
walks in a directed graph. Analogous to the presentation
in [16], a structured discrete-time rank-one bilinear system
can be decomposed into a structured linear system with a
feedback compensator. The controllability and observability
of the associated linear system is necessary for the the
controllability of the overall bilinear system.

Notation. The (i, j)th entry of Ak is denoted as akij . A pair
(A, c) is called controllable if the associated controllability
matrix

[
c Ac · · · An−1c

]
has full row rank. Similarly,

a pair (A,h) is called observable if the associated observ-
ability matrix

[
h ATh · · · (AT)n−1h

]T
has full row

rank. Similarly a triplet (A, c,h) is said to be controllable
and observable if both the rank conditions are satisfied.

II. A GRAPH THEORETIC MODEL OF STRUCTURED
BILINEAR SYSTEMS

We are concerned with bilinear systems whose state evo-
lution is described by the following

x(t+ 1) = Ax(t) + u(t)Bx(t), (1)

where x(t) ∈ Rn denotes the state of the system, u(t) ∈ R
denotes the external control input and the matrices A,B ∈
Rn×n denote the state matrix and input matrix, respectively.
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Fig. 1. An example of a physical realization of a rank-one homogeneous
bilinear system.

Similar to the systems described in [16], [17], we focus on
systems where B is of rank one, such that the input matrix
can be written as B = chT where c,h ∈ Rn. Thus, we have
an alternate representation of the system described by (1)

x(t+ 1) = Ax(t) + u(t)chTx(t). (2)

Although the rank one assumption placed on the model is
restrictive, it still applies to non-trivial class of applications.
One of the more complex examples of a real system with
a rank one input matrix, i.e., of the form in (2), is shown
in Fig. 1 and is comprised of a multiplexer, an amplifier
(the gain of which is the external control input), and a de-
multiplexer. This kind of architecture appears in long-haul
transmission systems where the bandwidth is limited to and
from a remotely located controller. The multiplexer receives
the outputs (or measurements) from a set of nodes (the
nonzero elements of h) and combines them into a single
stream to be sent to the amplifier,

∑n
i=1 hixi(t) = hTx(t).

This data stream is then amplified using the external control
input, u(t), generated by the designer and then sent to a set
of nodes (the nonzero elements of c) via the de-multiplexer.

A. Structured Systems

The concept of structured systems allows us to model
systems when the parameters that define their dynamics are
unknown. In other words, for the matrices A, c, and h in
(2), only the locations of zero and non-zero (denoted by
∗) entries are known, but not the exact values of non-zero
entries. In modeling such a system, the locations of fixed
zeros are conserved, but the non-zero entries are replaced
by free independent parameters. A simple example of such
matrices could look like

A =

[
0 λ1
λ2 0

]
, c =

[
0
λ3

]
hT =

[
λ4 λ5

]
,

where λi ∈ R, i ∈ {1, . . . , 5}, represent the structural
connectivity (i.e., sparsity pattern) of a system described in
(2). We study these systems in a generic sense, such that
their properties hold for almost all potential choices of the
independent parameters.

Definition 1: A property (e.g., controllability, stability) is
said to be generic if the set of values of parameters for which
the property does not hold is a set of Lebesgue measure zero.

One of the most straightforward techniques to show that a
set is of Lebesgue measure zero is to show that this set is the

zero set of one or more polynomials with real coefficients,
i.e., a proper algebraic variety.

Due to the relaxation delivered by considering the system
generically, the conditions for structural properties tend to
be simpler than their classical analogs. This simplification
makes studying the control related properties of large scale
systems, like complex networks, tractable.

Definition 2: A structured system (2) described by
(A, c,h) is said to be structurally equivalent to another
system (Ā, c̄, h̄) if there is a one-to-one correspondence
between the locations of fixed zero and non-zero entries of
A and Ā, c and c̄, and h and h̄, respectively.

Definition 3: The system (2) described by the triplet
(A, c,h) is said to be structurally controllable if there
exists a triplet (Ā, c̄, h̄) which is structurally equivalent to
(A, c,h) and is controllable.

B. Graph Representation of Structured Bilinear Systems

Directed graphs offer a natural alternate representation
of structured systems. In this subsection, we introduce a
graph-theoretic representation of structured bilinear systems
derived from the corresponding description of structured
linear systems [2], [4], [6]. In order to do so, we first define
a linear system associated to the bilinear system (2) (similar
to that in [16]),

x̃(t+ 1) = Ax̃(t) + cũ(t) (3)

ỹ(t) = hTx̃(t).

Here, x̃(t), ũ(t), and ỹ(t) define the pseudo-state, pseudo-
input and the pseudo-observation of the system, respectively.
The variables ũ(t) and ỹ(t) play an important role in the
graph-theoretic representation of (2).

The directed graph G = (V, E) describing (3) comprises
the vertices (V = X∪U∪Y) corresponding to the states of the
system X = {x1, . . . , xn}, pseudo-input U = {ũ}, and the
pseudo-observation Y = {ỹ}; and edges (E = EA ∪Ec ∪Eh)
corresponding to the matrices A, c, and h, where EA =
{(xi, xj) : aji ̸≡ 0}, Ec = {(ũ, xj) : cj ̸≡ 0}, and Eh =
{(xi, ỹ) : hi ̸≡ 0}, respectively. Here we use the operator ̸≡
to express that the operation holds generically.

Whenever there exists a pair (i, j) ∈ X 2 in system (2)
such that cjhi ̸≡ 0 (Bji ̸≡ 0), there exist edges (xi, ỹ) ∈ Eh
and (ũ, xj) ∈ Ec in system (3). In this case we say that
there exists a controlled edge from xi to xj . This represents
an interconnection between the nodes whose strength (edge
weight) can be externally controlled using the input u(t). If
there exists an xi ∈ X such that cihi ̸≡ 0 (Bii ̸≡ 0), we say
that the network possesses a controlled self-loop.

A walk W in a graph is a sequence of edges such that the
end vertex of a preceding edge is the begin vertex of the next.
The length of a walk is the number of edges present in the
walk. A walk is closed if its begin and end vertex are the
same. An ℓ-length walk W = {(w0, w1), . . . , (wℓ−1, wℓ)}
may also be represented as w0 → w1 → · · ·wℓ−1 → wℓ.
A path is a walk when none of the vertices and edges are
repeated. Two paths (walks) are called disjoint if they consist



of disjoint sets of vertices. A path is called a U-rooted (Y-
topped) path if the path has its begin (end) vertex in U (Y).
A number of mutually disjoint U-rooted (Y-topped) paths
is called a U-rooted (Y-topped) path family. A closed path
is called a cycle. A set of disjoint cycles is called a cycle
family. We say a collection of walks (or paths or cycles) W
covers all the vertices in X if every vertex in X is either the
start or the end vertex of at least one of the edges in W .

Define the set XY as the set of state vertices which have a
directed edge to ỹ; i.e., XY = {xj ∈ X : hj ̸≡ 0}. Let WXYU
denote the set of all walks from ũ to any vertex xj ∈ XY
of length less than or equal to n2. Note that the vertices
and/or edges in such a walk may be repeated. As we will
see later, under the assumption that (A, c) is structurally
controllable and/or (A,h) is observable, the set WXYU is
always nonempty.

C. Structural Controllability of Linear Systems

Our results on structural controllability of bilinear systems,
draws on several existing results in structural controllability
of linear systems [2]–[4], therefore, we review the key
terminology and results here. A structured linear system is
described by

x(t+ 1) = Ax(t) +Bu(t) (4)
y(t) = Cx(t)

where A ∈ Rn×n, B ∈ Rm×n, and C ∈ Rp×n are structured
matrices.

Definition 4: The generic rank of a structured matrix M is
the maximal possible rank obtained by fixing the parameters
of M.

Definition 5: The system (4) defined by structured matri-
ces (A,B) is said to be reducible if and only if there exists
a permutation matrix P such that the pair (A,B) satisfies

PTAP =

[
A11 0
A21 A22

]
, and PTB =

[
0
B2

]
.

The following result establishes the criteria for structural
controllability of linear systems, connecting the algebraic and
graphical representations [2]–[6].

Lemma 1: For the linear system (4) described by struc-
tured matrices (A,B) the following are equivalent:

1. The system (4) is structurally controllable.
2. The generic rank of

[
A B

]
equals n and the pair

(A,B) is irreducible.
3. In G there exists a U-rooted path to every vertex

xi ∈ X and there exists a disjoint union of a U-rooted
path family and a cycle family that covers all the state
vertices in X .

Similar results exist for the observability of the structured
matrices (A,C).

D. Controllability of Bilinear Systems

Our definition of generic properties says that the prop-
erty must hold for almost all choices of parameter values.
However, in order to verify this, the classic (unstructured)
analog of this property must exist and be well-defined. Such

verifiable, algebraic conditions, in the most general sense,
for controllability bilinear systems exist only for the class of
single input, rank one described systems by (2) [16], [17].
Our main result builds from the following result.

Lemma 2: The bilinear system (2) described by (A, c,h)
is controllable if and only if both the following hold:

1. rank
[
c Ac · · · An−1c

]
= rank


hT

hTA
· · ·

hTAn−1

 = n,

2. The greatest common divisor (g.c.d.) of all the ele-
ments in I equals one where I = {j : hTAj−1c ̸=
0, j = 1, . . . , n2}.

III. MAIN RESULT

The following result charaterizes the controllability of
structured bilinear systems (2) described by the matrix triplet
(A, c,h) such that only the sparsity structure of the matrices
is known.

Theorem 1: For the system described by (2) and the
structured triplet (A, c,h) the following are equivalent:

1. The system (2) is structurally controllable.

2a. The generic rank of M =

[
A c
hT ∗

]
equals n + 1;

(A, c) and (AT,h) are irreducible.
b. We have gcd(I) = 1 where I = {j : hTAj−1c ̸≡

0 with j = 1, . . . , n2}.
3a. In G the collection of all the paths from U to Y cover

all the vertices in X and there exists a disjoint union of
a U-rooted and Y-topped path family and cycle family
that covers all the state vertices.

b. There exist a collection of walks of coprime lengths in
WXYU .

Remark. The structural controllability and observability of
the associated linear system (3) is necessary for structural
controllability of the bilinear system and is provided by
parts 2a, and equivalently, 3a of the theorem. Part 3b of the
theorem presents a graphical equivalence of part 2b which to-
gether with 3a (correspondingly 2a) completely characterizes
the structural controllability of rank-one bilinear systems.
Part 3b indicates that there must exist closed walks of
coprime lengths, each having exactly one controlled edge.
Note that part 3b is automatically satisfied if there exists a
controlled self-loop. The proof for Theorem 1 is provided in
Section IV.

A special case of this result exists if the graph represented
by A is strongly connected with n self-loops; i.e., aii ̸≡ 0 for
all i ∈ {1, . . . , n}. In this case, the bilinear system described
by (A, c,h) is structurally controllable for any non-zero c
and h (if c or h is zero, then that would imply B ≡ 0 which
would make the system uncontrollable for any input). This
is formally stated in the proposition below.

Proposition 1: Suppose (X , EA) is strongly connected
and (xi, xi) ∈ EA for every i ∈ {1, . . . , n}. Then the bilinear
system described by (2) is structurally controllable for any
structured c and h such that B = chT ̸≡ 0.



Proof: We will only present a sketch of the proof here.
Since aii is not a fixed zero for every i, the generic rank
of M trivially equals n + 1. Also, (X , EA) being strongly
connected implies that that every state vertex lies on one of
the directed paths from U to Y . This, in addition to self-
loops, guarantees the irreducibility of (A, c) and (AT,h).
Furthermore, since B ̸≡ 0, there exists at least one pair
(i, j) ∈ {1, . . . , n}2 such that (xi, ỹ), (ũ, xj) ∈ E ; i.e., there
is a controlled edge from xi to xj . Since (X , EA) is strongly
connected, there exists a walk from xj to xi using only the
edges of EA. Let the length of the walk be ℓ so that the
overall walk W1 starting from the edge (ũ, xj) has a length
of ℓ+1. Define another walk W2 using the same edges with
(xj , xj) ∈ EA added. In that case W2 will be of length ℓ+2,
which is comprime to the the length of W1.

Note that if in addition A is nonsingular, only a single
self-loop is required. This proposition automatically applies
to connected undirected (bidirectional) graphs, since every
connected undirected graph is strongly connected.

IV. PROOF OF MAIN RESULT

We decompose the proof of the main result into showing
the equivalence relation between pairs of conditions. We
begin by presenting several lemmas which simplify the main
proof.

A. Lemmas

Let the number of non-zero elements in A, c, and h be
NA, Nc, and Nh, respectively, with N = NA + Nc + Nh

the total number of non-zero elements. Thus every point
in RN represents a set of parameters for the system, and
consequently RN denotes the parameter space for the system.

An algebraic variety is the zero set of a finite set of
polynomials. An algebraic variety V ⊂ RN is called a proper
variety if V ̸= RN and nontrival if V ̸= ∅. A property on
RN is called a generic property if the set of values in RN

not satisfying the property lie on a proper variety [3].
Lemma 3: The system (2) described by the structured

triplet (A, c,h) is structurally controllable if and only if all
uncontrollable triplets structurally equivalent to (A, c,h) lie
on a proper variety in RN .

Proof: Let λ =
[
λ1 · · · λN

]T
be a parame-

ter vector associated with (A, c,h). Note that whenever
1 ∈ I , gcd(I) = 1 automatically. Define S as the set
of all sets of coprime integers between 2 and n2; i.e.,
S = {{i1, . . . , ik} : gcd{i1, . . . , ik} = 1, {i1, . . . , ik} ⊂
{2, . . . , n2}, k ∈ {2, . . . , n2}}. Define the following poly-
nomials:

ψ1(λ) = det
([
c Ac · · ·An−1c

])2
;

ψ2(λ) = det
([

h ATh · · ·
(
AT

)n−1
h
])2

;

ψ3(λ) = (hTc)2 +
∑

{i1,...,ik}∈S

(hTAi1−1c)2 · · · (hTAik−1c)2.

Assume that there exists a controllable triplet (A, c,h); i.e.,
there exists a λ ∈ RN such that the associated system
is controllable. In that case as Lemma 2 states, (A, c) is

controllable which implies ψ1(λ) ̸≡ 0; (A,h) is observable
which implies ψ2(λ) ̸≡ 0; and gcd(I) = 1 where I =
{j : hTAj−1c ̸≡ 0; j = 1, . . . , n2}. The last condition
implies that there exists a set of coprime integers I between
1 and n2 such that for every j ∈ I , hTAj−1c ̸≡ 0. By
definition, either 1 ∈ I or I ∈ S. Therefore, either (hTc)2 ̸≡
0 or there exists an {i1, . . . , ik} ∈ S with k ∈ {2, . . . , n2}
such that (hTAi1−1c)2 · · · (hTAik−1c)2 ̸≡ 0 which implies
that ψ3(λ) ̸≡ 0. Therefore, ψ(λ) ≜ ψ1(λ) · ψ2(λ) · ψ3(λ)
is such that ψ(λ) ̸≡ 0. In other words, ψ(λ) = 0 (which
defines the set of all uncontrollable parameters) defines a
proper variety.

Conversely, assume that ψ(λ) = 0 defines a proper variety.
This implies that there is a λ ∈ RN such that ψ1(λ) ̸≡ 0
which implies corresponding (A, c) is controllable; ψ2(λ) ̸≡
0 which implies that (A,h) is observable; and ψ3(λ) ̸≡ 0
which implies that the g.c.d. condition is satisfied. Hence,
the resulting system is structurally controllable.

Before introducing the next lemma, which deals with the
generic rank of a matrix, we need to define the concept of
linear dependence of structured vectors.

Definition 6: Let {v1, . . .vk} be a set of structured vec-
tors of dimension n (with k ≤ n). The set is said to be
generically linearly independent if and only if the generic
rank of the k × n matrix V =

[
v1 · · · vk

]
equals k.

In other words, the set of n-dimensional structured vectors
v1, . . . ,vk is generically linearly dependent if and only if
there for almost every set of parameter values, there exist
constants α1, . . . , αk ∈ R not all zero, such that α1v1 +
· · ·+ αkvk = 0.

Lemma 4: The generic rank of M =

[
A c
hT ∗

]
equals

n+ 1 if and only if the generic ranks of
[
A c

]
and

[
A
hT

]
both equal n.

Proof: First assume that the generic rank of M equals
n + 1. This implies that all the rows (and columns) of M
are generically linearly independent which in turn implies
that the generic ranks of

[
A c

]
(obtained by removing

the last row) and
[
AT h

]T
(obtained by removing the

last column) both equal n. Conversely assume that both[
A c

]
and

[
AT h

]T
both have generic rank n. Then the

generic rank of A is at least n − 1. If the generic rank of
A equals n, then the free parameter in the free parameter
in the (n + 1, n + 1) position of M guarantees that the
generic rank of M equals n + 1. On the other hand, if the
generic rank of A equals n−1, then c is generically linearly
independent to all the columns of A. This in turn implies
that

[
cT ∗

]T
is generically linearly independent to all the

columns of
[
AT h

]T
. But the columns of

[
AT h

]T
are

all generically linearly independent by assumption. Thus, the
generic rank of M equals n+ 1.

The following lemma characterizes the generic g.c.d con-
dition on the set I (defined in Theorem 1) in terms of walks
from U to XY in the equivalent directed graph of the system.
It states that gcd(I) = 1 is equivalent to the case there are
closed walks of coprime lengths in G formed by edges in



EA, each with exactly one controlled edge.

Lemma 5: With I defined as in Theorem 1, the gcd(I) =
1 if and only if either there exist walks of coprime lengths
in WXYU .

Proof: The fact that gcd(I) = 1 implies
that there exist integers ℓ1, . . . , ℓk ∈ I such that
gcd({ℓ1, . . . , ℓk}) = 1. Therefore, we have that
hTAℓ1−1c ̸≡ 0, . . . ,hTAℓk−1c ̸≡ 0 generically. That
is there exist pairs of integers (i1, j1), . . . , (ik, jk) such
that hj1a

ℓ1−1
j1i1

ci1 ̸≡ 0, . . . , hjka
ℓk−1
jkik

cik ̸≡ 0 generically.
Consider the fact that hj1a

ℓ1−1
j1i1

ci1 ̸≡ 0. This is in turn
equivalent to the fact that ci1hj1 ̸≡ 0, so (ũ, xi1) ∈ Ec and
(xj1 , ỹ) ∈ Eh, and that there exist a sequence of nodes
p0, . . . , pℓ1−1 ∈ X such that p0 = xi1 , pℓ1−1 = xj1 ,
and (xps , xps+1) ∈ EA for s ∈ {0, . . . , ℓ1 − 2}.
In other words there exists a walk W1 defined as
ũ ∈ U → xi1 = p0 → p1 → · · · → pℓ1−1 = xj1 ∈ XY of
length ℓ1. Therefore, W1 ∈ WXYU . Also, ℓ1 ∈ I implies that
ℓ1 ≤ n2. Using a similar procedure we can construct walks
W2, . . . ,Wk ∈ WXYU of lengths ℓ2, . . . , ℓk, respectively.
Since gcd({ℓ1, . . . , ℓk}) = 1, the proof is complete.

As stated eariler, whenever 1 ∈ I; i.e., there exists a
controlled self-loop or equivalently an xj ∈ V such that there
exists a walk ũ → xj → ỹ in G, Lemma 5 is automatically
satisfied. Furthermore, if there exists a self-loop on a node
in any one of the walks from ũ to WXYU , Lemma 5 is
also satisfied because if such a walk exists, we can define a
second walk by including the self-loop just once which will
be coprime in length to the previous walk.

The final result of this section shows that if (A, c) is
structurally controllable or (A,h) is structurally observable,
the set I is not empty. In fact there exists an integer k ≤ n
such that k ∈ I; i.e., there exists at least one walk of
length less than or equal to n satisfying the conditions in
the previous lemma. This is due to the fact if (A, c) is
structurally controllable (if (A,h) is structurally observable)
then ũ is connected to (ỹ is connected from) every vertex in
X . This coupled with the fact that B is rank-one gives us
the following result.

Lemma 6: Under the condition that (A, c) is structurally
controllable or (A,h) is structurally observable, there exists
a k ≤ n such that k ∈ I .

Proof: First assume that (A, c) is structurally con-
trollable. Then the generic rank of

[
c Ac · · · An−1c

]
equals n. This is equivalent to saying that for any structured
row vector hT such that h ̸≡ 0, hT

[
c Ac · · · An−1c

]
is not zero identically. In other words, there exists at least
one k ∈ {1, . . . , n} such that hTAk−1c ̸≡ 0, and hence
k ∈ I . The proof for the situation when (A,h) is observable
is almost identical.

This result also implies the fact that under the assumption
of controllability and/or observability of the associated linear
system, the set WXYU defined using the graph of the bilinear
system is nonempty.

x2 x3

x1

1λ2λ

3λ

4λ

5λ 6λ u

Fig. 2. A directed graph representation of a three-state bilinear system.

B. Proof of Main Result

Proof of 1 ⇔ 2: The structural controllability of
the structured triplet (A, c,h) is equivalent to saying
that the generic ranks of

[
c Ac · · · An−1c

]
and[

h ATh · · · (AT)n−1h
]

both equal n, and the g.c.d.
of all the elements of I equals 1. The generic rank con-
ditions are equivalent to saying that (A, c) is structurally
controllable and (A,h) is structurally observable. Using the
results from [3], [4], alternatively one can say that the generic
ranks of

[
A c

]
and

[
AT h

]T
equal n and that (A, c) and

(AT,h) are irreducible. Using Lemma 4, this is equivalent
to the fact that the generic rank of M equals n+1 and that
the irreducibility and g.c.d. conditions hold true.

Proof of 2 ⇔ 3: The first part of the equivalence follows
from Lemma 4 and the results in [4], [6]. The second part
of the equivalence follows from Lemma 5.

V. EXAMPLES

In order to help illustrate the important aspects of Theorem
1, consider the three-state bilinear system depicted in Fig. 2:

x(t+1) =

 0 0 λ1
λ2 0 0
0 λ3 λ4


︸ ︷︷ ︸

A

x(t)+u(t)

 0
0
λ5


︸ ︷︷ ︸

c

[
0 λ6 0

]︸ ︷︷ ︸
hT

x(t),

(5)
such that the parameters λi ∈ R for i = 1, . . . , 6. As
described earlier, we can define the associated linear system
whose graphical representation is given by G = (V, E) such
that the vertex set V = X ∪ U ∪ Y with X = {x1, x2, x3},
U = {ũ}, and Y = {ỹ}. The edge set E is the union of
the edge sets EA = {(x1, x2), (x2, x3), (x3, x1), (x3, x3)},
Ec = {(ũ, x3)}, and Eh = {(x2, ỹ)}. The directed graph of
the associated linear system is shown in Fig. 2. The edges
belonging to EA ∪ Ec ∪ Eh are shown using solid lines. It
can be easily seen that X , EA is strongly connected (in fact a
cyclic graph) with just one self-loop. As can be seen from the
structures of c and h, there is only one controlled edge in the
network (the dashed line in Fig. 2). Recall that a controlled
edge is the interconnection between nodes that be controlled
via the external input to steer the system state trajectory.

First, note that the generic rank of A equals 3 and thus,

M =

[
A c
hT ∗

]
has full generic row rank. Furthermore,



x2 x3

x1

ũỹ

1λ2λ

3λ

4λ

5λ6λ

Fig. 3. The associated linear system corresponding to the bilinear system
in Fig. 2.

both (A, c) and (AT,h) are irreducible which tells us that
(A, c) is structurally controllable and (A,h) is structurally
observable. Alternatively, one can deduce this from the
directed graph G. For example, there exist paths ũ→ x3 →
x1 → x2) and (x3 → x1 → x2 → ỹ) which clearly tells
us that all the conditions listed in part 3a of Theorem 1 are
satisfied.

Similarly it can be observed that while hTc = hTAc =
0, both hTA2c = λ1λ2λ5λ6 ̸≡ 0 and hTA3c =
λ1λ2λ4λ5λ6 ̸≡ 0. Thus, 3, 4 ∈ I and hence gcd(I) = 1.
Alternatively, this can be deduced from the fact that there
exist walks W1 = ũ → x3 → x1 → x2 of length 3 and
W2 = ũ → x3 → x3 → x1 → x2 of length 4, with
x2 ∈ XY , which are coprime. Since all the algebraic as well
as graphical conditions listed in Theorem 1 are satisfied,
the system described in (5) is structurally controllable. As
an illustration, assume that λ1 = · · · = λ6 = 1. The
controllability and observability matrices for the associated
linear system are as follows

[
c Ac A2c

]
=

0 1 1
0 0 1
1 1 1

 ,
 hT

hTA
hTA2

 =

0 1 0
1 0 0
0 0 1

 ,
which clearly tells us that both have full rank and
hence (A, c,h) is controllable and observable. Furthermore,
hTc = hTAc = 0 whereas hTA2c = hTA3c = 1 implies
that 3, 4 ∈ I and thus, gcd(I) = 1. Thus, the triplet is
controllable and the system (5) is structurally controllable.

Now suppose the self-loop (x3, x3) is removed. The
resulting network is still strongly connected and the asso-
ciated linear system is still both structurally controllable and
observable. However, the set I now contains walks of lengths
3, 6, 9, and higher multiples of 3, which are not coprime to
each other. Therefore, part 2b (or part 3b) of Theorem 1
fails and, the associated bilinear system is not structurally
controllable.

VI. CONCLUSIONS

We formulated a set of easily verifiable algebraic and
graph-theoretic conditions for the controllability of a class of
structured bilinear systems. This class of single input systems
with input matrices of rank one was motivated by the existing
conventional controllability results for unstructured bilinear

systems. We anticipate that we will be able to extend our
results to the case of multiple input rank one bilinear systems.
Removing the rank one limitation will be challenging due to
the lack of exact algebraic conditions for testing control-
lability. However, we find that the insight drawn from the
structural control criteria and the alternate graph-theoretic
representation may help shed light on new perspectives in
bilinear control, which could help the pursuit of a more
general conventional (nonstructured) controllability result for
bilinear systems.
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