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Abstract— Pseudospectral approximation techniques have  We briefly introduce a standard optimal control prob-
been shown to provide effective and flexible methods for sivg  |lem and review the pseudospectral method to provide a
optimal control problems in a variety of applications. In this ¢4, nqation for the proof. Several useful preliminary résul
paper, we provide the conditions for the convergence of the d I d bef t th . It i
pseudospectral method for general nonlinear optimal contol are aeve Ope_ elore we pre,s?” (_3 main resu. In section
problems. Further, we show that this proof is directly exterdible V. We then discuss the multidimensional extension for the
to the multidimensional pseudospectral method for optimal pseudospectral method and comment on the convergence in

ensemble control of a class of parameterized dynamical syshs.  section VI. We conclude by showing illustrative examples
Examples from quantum control and neuroscience are include from quantum control and neuroscience

to demonstrate the method.
II. PROBLEM STATEMENT
Without loss of generality, we consider an optimal control

oblem defined on the time interv@l = [—1,1].
Problem 1 (Continuous-Time Optimal Control):

. INTRODUCTION

Optimal control is a systematic and powerful approach tBr
characterize a wide variety of problems arising in all areas
of science and engineering. Many computational methods

have been developed to solve these challenging problems

In the past two decades, a pseudospectral method for dis- ™ J(,u) = / £(t 2(t), u(®))dt, (1)
cretizing a continuous-time optimal control problem into g4 i(t) = f(2(t), u(t)) )
a finite dimensional constrained nonlinear optimizatios ha

garnered significant interest and found application inaege e(@(=1),2(1)) = (3)
ranging from the design of satellite maneuvers [1] to the g(z(t),u(t)) < 0, 4)
control of quantum phenomena [2]. In addition, a multi- lu@)|| <A, we H, (), a>2 (5)

dimensional extension has been developed to apply thes?1 0

methods to parameterized families of dynamical system¥ €€ € C" is the terminal cost; the running codt, €

arising in such areas as quantum control and neuroscierice: WhereC* is the space of contmuouflfuncuons V!“jh

[3], [4], [5]- Despite widespread use, only recently has thé& assical derivatives, and dynamu{se CTO{ ’ Wh.e reCy,

literature addressed the important topic of convergence bsft_he space oh-vector valued”™" functions, with respect

the pseudospectral method. to its arguments the.state,(t) e R™, and gontrol,u(t) €
Substantial work, including proof of convergence and thga; € apdg are terminal and path constraints, respectively;

corresponding rates, has been done for systems that belon (Q,) IS thg m-vector valued Sobok_av space.aThe norm

the class of feedback linearizable form [6]. As there areyna ssociated with the Sob02lev space with= 1, 7%(Q), is

systems that do not conform to this specialized dynamn%”en with respect to thé"(£2) norm,

- for example, ensemble systems, as described in Section 1Al ey = (Z Hh(k)H )

VI, do not belong to this category - analysis for general

systems is of keen interest. Gong et al. have also shown major . : L

components of convergence with regard to general SystemsAn optimal nonlinear control problem of this form is, in

including the convergence of the dual problem [1]. Here wd€ €neral, intractable and difficult to solve analyticallyerd
extend these results and relax the necessary assumpno use a direct collocation approach based on pseudospectra

In particular, we use results from polynomial approximatio approximations to discretize this problem into a finite dime

theory to make the proof more transparent and touch up hor;al constrained ?r:)nhknear optlmltzat|(]3r1thln the f(;)llngn wral
the convergence of the multidimensional extension. section we review the key concepts of the pseudospectra

method for optimal control.

This work was supported by the NSF Career Award #0747877 laed t
AFOSR V1P FAGEE0 Lo 0145 lIl. PSEUDOSPECTRAL METHOD

J. Ruths is with the Faculty of Engineering Systems & ; ; ;
Design. Singapore University of Technology & Design. Si As a collocation (interpolation) method, the pseudospéctr

justinrut hs@ut d. edu. sg method uses Lagrange polynomials to approximate the states
A. Zlotnik is with the Department of Electrical & Systems Hmeering, and controls of the optimal control problem,

Washington University in Saint Louis, Saint Louis, MO 63112SA N

azl ot ni k@se. wust | . edu (1) ~ Inz(t) = Tl (t 6
J.-S. Li is with the Faculty of Electrical & Systems Engiriagr Wash- ( ) N ( ) Z?V:O k k( )’ ( )

ington University in Saint Loui S| i @eas. wust | . edu u(t) = Inu(t) = > urli(t), (7)



where z(ty) = Inz(ty) = Tx and u(ty) = Iyu(ty) = Remark 1: The dynamics in (11) have been relaxed from

u, because the Lagrange polynomials have the propertlye equality in (9) to ensure that the discrete problem is

l(t;) = dri, Wheredy; is the Kronecker delta function and feasible, which will become clear in Proposition 1.

t; are the interpolation nodes [7]. Therefofig, and @, are

the discretized values of the original problem and become IV. PRELIMINARIES

the decision variables of the subsequent discrete problem. We seek to address three questions related to solving the
Although interpolating with Lagrange polynomials dis-continuous-time optimal control (Problem 1) by solving the

cretizes Problem 1, we need to ensure that the integral in (Ryeudospectral discretized constrained optimizatiomkPr

is computed accurately and the dynamics in (2) are obeydém 2). Suppose a feasible solutin u) exists to Problem

The integral can be approximated through Gauss quadratutte;What are the conditions for:

here we use Legendre polynomials as the orthogonal basig) Feasibility: For a given order of approximatiod\, does

for the pseudospectral method. The Legendre-Gauss-lmobatt  Problem 2 have a feasible solutidt, @), which are the

(LGL) quadrature approximation, interpolation coefficients given in (6) and (7)?
1 N 1 2) Convergence: As N increases, does the sequence of
/ f(t)dtﬁsz(ti)wi, wi:/ 6(t)dt,  (8) optimal solutions,{(z', %)}, to Problem 2 have a
-1 =1 -1 corresponding sequence of interpolating polynomials

is exact if the integrang € P,y_1 and the nodes; € which converges to a feasible solution of Problem 17?
- (3

I'“GL where Poy_; denotes the set of polynomials of Namely, .
degree at mostN — 1 and wherel'“GF = {t; : Ln(t)|,, = N
0,i =1,...N — 1} J{-1,1} are theN + 1 LGL nodes
determined by the derivative of th&" order Legendre
polynomial, L (¢), and the interval endpoints [8].

Using the LGL nodes, we can rewrite the Lagrange poly-
nomials in terms of the orthogonal Legendre polynomials.
This is critical for the approximation to inherit the spdcia
derivative and spectral accuracy properties of orthogonal

(IN:CT,INuT) = (z,u)

3) Consistency: As N increases, does the convergent se-
guence of interpolating polynomials corresponding to
the optimal solutions of Problem 2 converge to an
optimal solution of Problem 1? Namely,

lim (Zyz', Zyu') = (2%, u*)
N — 00

polynomials as [9], con_sistency of the pseudospectral gpproximatioq methiod fo
) . optimal control problems. We begin by presenting several

0(t) = 1 (" - ULN(t)' key established results in polynomial approximation tireor
N(N +1)Ln(tx) t— 1% and the natural vector extensions. With these inequalities
The derivative of (6) at; € T'LCL is then, we are able then to prove feasibility and convergence. We

define an optimal solution to Problem 1 as any feasible
d N N A solution that achieves the optimal cogtz*, u*) = J*.
gt = > akli(t) =Y Do = (Dya)(t;), We use this definition of an optimal solution within the
k=0 k=0 9) subsequent preliminaries and the main result. To this end,
where D is the constant differentiation matrix [8]. the last lemma of this section introduces the error in the

We are now able to write the discretized optimal controf©St due to interpolation.
problem using equations (6), (7), (8), and (9). We transform Remark 2: Note thatz € HZ(Q). Sincez(t) exists and
the continuous-time problem to a constrained optimizationf € C2~!, all the derivatives:(®) ¢ COVEk=01,...«
exist and are square integrable on the compact dofiain

Problem 2 (Algebraic Nonlinear Programming):
+®) e L2(Q). Thereforegx € HY(Q).

N

min J(Z,7) = o(Ty) + Zﬁ(m,@k)wk (10) Lemma 1 (Interpolati_on Error Bpunds [8], p. 289): If
=0 h € H*(Q), the following hold withcy, ¢, ¢3, ¢ > 0.
st ||f(Znz, Invu) — Dyal| < caN' ™ (11) (a) The interpolation error is bounded,
(@0, Zn) =0 (12) Il = Zhlls < exN=*[|Al|a)-
Tr, k) < 0 13 N o
9 ) < (13) (b) The error between the exact derivative and the derigativ
lukl| <A VE=0,1,....,N (14) of the interpolation is bounded,
wherec, is a positive constant; we define the discrefg2) i— Dnhlls < o N1
norm ||hl|x = /(h, B)w, for h, ki, ho € L2 (), with | whilz < ez Il

N The same bound holds for the discrét&(§2) norm,

(. hz)y = T (20 ot I = Dkl < Nl oy
k=0



(c) The error due to quadrature integration is bounded, Proof: Given that (z,u) is a feasible solution of
Problem 2, it satisfies (11)-(13). Our goal is to show that the
1 N . o
‘/ h(t)dt — Zh(tk)wk < eN~||h| (o) sequence of polynomiald,(Zyz,Zyu)}n, (i) is bounded,
1 P - “r (i) has a convergent subsequence and (iii) its limit is a
feasible solution of Problem 1, satisfying (2)-(4).

wheret,, is thek™ LGL node andwy, is the correspond-
ing k™ weight for LGL quadrature.

(i) Explicitly writing out the discrete norm in (11) gives
spaceh = (hy ho ... hy)T, hi € H¥(Q),i=1,2,...,n.
(&) The vector-valued extension of Lemma 1la is, by the _ _ ) o
: d lim (f:(Znw, Ivu) - D) () (15)
|h=Znhlla <> ki = Inhilla <> eiN kil (o). N‘“’O(
- 1 (i, Toves Jin Tove) = (s T} 1)
0,

Lemma 2: If h € HS(Q), i.e., ann-vector valued Sobolev N on ) 1/2 -
SO (fi@nw, Inu) — Dya:)*(t) | < caN' T

k=0 i=1

(b) Similarly, 1b can be extended,

I — Dyhlls < Z | — Dihlls < Z N Rl (o) which means that the derivative of the int_erpolating polyno
=1 =1 mial and the state dynamics match at the interpolation nodes
< eN'e, Moreover, asN — oo, the LGL nodeg,, € TtCL are dense
n in ©2, which shows that they match along the entire domain.

which again also holds for the discret& (2) norm. (i) The sequence(Zyz} is a sequence of polynomials

Proposition 1 (Feasibility): Given a solution (z,u) of on the compact domaifi, therefore, for each finiteV,
Problem 1, then Problem 2 has a feasible solutionu), Zyz € H(S). In the limit, we showed above in (15) that
which are the corresponding interpolation coefficients. (limy o0 Zyx)" matches the state dynami¢gss C2~1, so

Proof:  Given the feasible solution(z,u), let that {IN:T} are bounded, becaugeis b_ounded ovef), and
(Znz,Iyu) be the polynomial interpolation of this solution also Sat's_fﬂNx € HS(Q) for aII_N. With the boundedn(_ass
at the LGL nodes. Our aim is to show that the coefficient@f these interpolating polynomialgZyz} all supported in
of this interpolation satisfy (11)-(13) of Problem 2. Catesi % Rellich’s Theorem (cf., e.g., [10], p. 272) gives that ther

: ; rTa—1

the constraints imposed by the dynamics in (11). Because tife @ SubsequencgZy,x} which converges inff;~"(€2).

discrete norm is evaluated only at the interpolation points The same is true for the control interpolating polynomial.
Therefore, there exists at least one limit point of the figrct

IfZnz,Inu) — Dyz|ny = || f(z,u) — Dyz||N sequence (Zyx, Zyu)} which we denotéZ oz, Zou).
= ||# — Dy N (iii) Because Zyx} v has a convergent subsequence, we can
< egN'—@ express (15) as
where the last step is given by Lemma 2b. Therefore, the i(:zoox)(tk) = [(Zoow, Loour)(ts), (16)
interpolation coefficient§z, u) satisfy the dynamics of Prob- dt

lem 2 in (11). We can easily show that the path constraintshich states thatZ..z, Z.,u) satisfies the dynamics in (2)
are also satisfied becaugér(t),u(t)) <0 forall t € Q by at the interpolation nodes. Again, @& — oo, the LGL
(4). Because this holds for atl € €, it also holds for all nodest;, € I'*®t are dense if2, which further shows that

LGL nodest; € T'¢L, i.e., (Zoow, Ioou) satisfies the dynamics of Problem 1 at all points
o on the intervak). Similarly, one can prove that this solution
9(Tk, ) = g(z(tr), u(ty)) <0, satisfies the path constraints because the LGL nodes become

which gives (13). The endpoint constraints are triviallydense it asN — oo andg(zy, ux) = g(z(tx), u(ty)) <0
satisfied by the definition of interpolation and the presen<fét all LGL nodes. Again, the endpoint constraints are met
of interpolation nodes at both endpoints. Therefése;i) is exactly because the LGL grid has nodes at the endpoimts.

a feasible solution to Problem 2. u Lemma 3: Given (z,u), wherez € HZ(Q) andu €

Proposition 2 (Convergence): Given the sequence of so- H2(Q), and the corr_esponding interpolation c_oeffic_ients,
lutions to Problem 2,{(z, @)}, then the sequence of (z,u), then the error in the cost _functlonals defined in (1)
corresponding interpolation polynomial§Zyx, Zyu)}, has and (10) due to interpolation is given by,

a convergent subsequence, such that |J(z,u) — J(Z,0)| < cN ™.
Nlim (Inz,Inu) = (Toom, Toott), Remark 3: Notice that(x,«) and (Z,u) are not required
j—00

to be a feasible solutions to Problem 1 and 2, respectively.
which is a feasible solution to Problem 1. This result characterizes the error due to interpolation.



Proof: From (2) and (11) since(z(1)) = ¢(Zn), (iv) We are now ready to assemble the various pieces of this
proof. Combining (21) and (17) we have,

|J(z,u) — J(Z,0)| = ‘/1 L(x,u)dt — Zﬁ(fck,@k)wk .
- k=0

< *ut).
]\}E}nooJ( al) ngnooJ(:v a*) = J(x*,u*)
Since £L € C* z € H2(Q), andu € Hg(Q), the Adding the result from (18),

composi'Ee fynctionﬁ(t_) = E(x(t),u(t)_)__e H*(Q). Let lim J(zt,al) < J(@*,ut) < hm T(Iyat, Inul).
Ly = L(Zx, ur). Substituting these definitions and employ- N—oo —00 23)

ing Lemma 1c, we obtain Since the difference between the left and right sides, as
given by (22), decreases to zero &s— oo, the quantities
’/ L(t)dt — Zﬁkwk < eNTLEH) (- J(zt, at) andJ(Zyat, Zyut) converge toJ(z*,u*), i.e.,

0< lim [J(z* u*) — j(fT,ﬂT)}

Becausel ¢ H*(Q), |\£(t)||(a) is finite, from which the T N—oo -
result follows. n < Jim [J(Znal, Iyul) — J(21,a')] = 0.
V. MAIN RESULT Thus the optimal discrete cagtz ', a') of Problem 2 and the

Theorem 1 (Consistency): Suppose Problem 1 has an op-continuous cost/(Zyz', Zyu') of the corresponding inter-
timal solution (z*,u*). Given a sequence of optimal so-polation polynomials converge to the optimal cost:™, u*)
lutions to Problem 2{(z",u')} ., then the corresponding of Problem 1. Moreove(Z..z",Zcu') is a feasible solution
sequence of interpolating polynomial§(Zyzt, Zyut)}y, to Problem 1 and achieves the optimal cost. Therefore,
has a limit point(Z..z", Z..u') which is an optimal solution (Zwo#', Zoou') is an optimal solution to Problem 1.  m

to the original optimal control problem. VI, ENSEMBLE EXTENSION

Ensemble Control pertains to the study of a continuum of
dynamical systems of the form [11], [12],

Proof: We break the proof into four sections, employing
the results from the previous section.

(i) By Proposition 1, sincéz*, u*) is a solution to Problem d
1, then for each choice d¥, the corresponding interpolation —x(t,s) = f(t,s,(t,s),u(t)), (24)

coefficients,(z*,u*), are a feasible solution to Problem 2. dt
By the definition of optimality of(z', u1), which is indexed by a parameter vector that exhibits varati

B B within an interval,s € S c R? but controlled by the
J(zha) < J(@*,u*). (17)  open loop input(t). Such systems arise from environmental
interactions, uncertainty, or inherent variability thatluces
inhomogeneity in the characteristic parameters of the giyna
ics. An optimal ensemble control problem is formulated by
replacing the dynamics with the ensemble dynamics in (24)
and the cost with,

(i) By Proposition 2, the limit point of the polynomial
interpolation of the discrete optimal solution to Problem
2, imy oo (Inzt, Zyu') = (Tooz't, Zooul), is a feasible
solution of Problem 1. Therefore, we have, by the definition
of the optimality of(z*,v*) and the continuity of/,

J(@*u') < Jim J(Zyal, Iyul) (18) J = ( / (1, s)) / L(x(t,s), ))dt)ds (25)

_ T T . .
= J(Zoo!, Toou'). and the end and path constraints are extended in a straight-
(iii) Using Lemma 3, we can bound the error in the coderward manner. The method employs+ 1 dimensional

between the optimal solution of Problem (;*,*), and interpolating polynomials to represent and » with the
the corresponding interpolating coefficients?, ‘*) as approximate dynamics (compare to (9)) given by [4],

|J(z*,u*) — J(z*,3%)| < et N 72 (19) CZINxNS] e, 2(t,55) Zmekh L (26)
Similarly, we can bound the error in the cost between the
optimal solution of Problem 2z, a'), and the polynomial wheres = (s, ss, ... ,s4) € S C RY. This extension hinges
interpolation of this solution(Zy ', Zyu'), as upon the lack of time dependence in the new dimensions

of the problem { parameter dimensions). Propositions 1
and 2 can then be extended in a straightforward manner
Recall that Lemma 3 does not requitEyv ', Zyu') to be by incorporating additional dynamics constraints that act

|J(Znat, Inu®) — J(@T,a")| < caN 7. (20)

a feasible solution of Problem 1. From (19) and (20), in parallel. Lemma 3 will include gaussian quadrature ap-
T - proximations of both thes and ¢ integrals. With these
]\}Efloo J(@aT) = J(@" ), (21)  |imited modifications, the approach above guarantees the
lim [J(Zya!, Zyul) — J(@t,ah)] = 0. (22) convergence of the multidimensional pseudospectral nletho
N—o0 applied to optimal ensemble control problems.



VII. EXAMPLES

In this section we demonstrate the multidimensional 0.65 CROP ———

pseudospectral method and the convergence of the method - (23,3)

through examples from quantum control and neuroscience. 0.60 m ﬂgg;
A. POLARIZATION TRANSFER IN NMR 0550/ (11,3)

9,3

Polarization transfer is an important fundamental tech- ?0 sol o
nigue used in NMR spectroscopy to reveal the structure '
of complex biomolecules and has far-reaching impacts on 0.45}
our understanding of, e.g., cell signaling and drug deliv-
ery. Optimal control techniques have achieved significant 0401 (NN, =
advancements in pulse design, which in turn yield increased 0.35 ‘ ‘ ‘ ‘ ‘ ‘
efficiencies in polarization transfer [13], [2], [3]. Phygal 60 70 80 90 100 110 120 130
models of this transfer contain parameters that are pexturb J (Hz)

by the chemical environment surrounding the system. It is
possible for the spin coupling variation to be on the sam@g. 1. A series of solutions to the problem of polarizaticamsfer achieved

- . the multidimensional pseudospectral method. The levdiszretization,
order as the value of the nominal COUpI'ng' for example >-1 is increased illustrating the rapid convergence charatiterof the

Hz in a HNG, protein. Recent studies of such ensemble p@seudospectral method. The analytically derived optimeaisfer efficiency

larization transfer have used an optimal control formolati for the single-valued system, CROP [13], provides an uppmmd on
the expected ensemble efficiency. A single-valued psewdtsp optimized

given by’ solution (gray dashed line) achieves a narrow window ofgrerance with
1 146J degraded performance on the edges of the variation, whichis us to
max 7= — T (T J) dJ specifically consider the ensemble variation. (Paramefers [63, 123] Hz,
250 ), s, OV € = 183 Hz, £, = 163 Hz, T = 25ms, A=50 Hz)
T 0 —ur wr O 0 0 1
;2 u; _ga _50 _é] _fc 8 iz nominal parameter value, but degraded performance at the
3 || —u2 —Sa ~Sc 3
s.t. P J b =& 0 —uy || 2 | edges.
Ts 0 =& —J -0 =& w x5 B. SPIKING OF NEURON OSCILLATORS
L6 00 0 wuw -—uwu 0 L6 The dynamic interactions of neurons in the human brain
z(0,J)=[100000], are often modeled as a network of weakly connected nonlin-
ear oscillators [14]. Each individual neuron can be modeled
ud(t) +u3(t) < A, Vt € 0,71, (27) by a systemi = f(z, I, «) with an attractive, non-constant,

o o periodic limit cycle, wherex(t) € R™, I(t) € R, anda € R?
where the transfer efficiency (cosj) maximizes the value gre the state, control, and parameter set, respectively. Th
of zg over the ensemble at the terminal tind& x; are  can pe reduced to a scalar system, called a phase model,
expectation values of components of the spin _operatb;es; of the formé = w(a) + Z(6,a)l, whered(t) is a phase
[1—dJ,1+06J],6J € (0,1), is the scalar coupling between ariaple that represents the position «fft) near the limit
spins exhibiting variation{, and¢, are autocorrelated and cycle,w(a) is the natural frequencyi() is the control, and

cross-correlation relaxation rates, respectively; and u2  ihe phase response curve (PRE), ) is a 2r-periodic
are the applied pulses (controls); ardis the maximum ¢ nction of ¢, which quantifies the shift id due to an

allowable amplitude [2]. The dynamics and parameters afgfinjtesimal perturbation in: [15]. The reduction is valid

normalized by a nominal scalar coupling. o ~ for bounded input, i.e|I| < A, and provides a theoretical
Figure 1 displays the convergence of the multld_lmen5|on@|asis for controlling the spiking period of a neuron [5]

pseudospectral method as the order of approxima®n, \yhere the objective of minimum control power arises from

increases and corresponding to solutions of (27) with gnysiological considerations. In an experimental or ctii

30 Hz variation around the nominal scalar couplitg =  setting, it is often desirable to synchronize the spikingqzk

93 Hz (6J = 30/93 ~ 0.32 in the normalized case). 1 of 3 collection of neurons, each of which has a slightly

T_he analytically denve_d optimal transfer efficiency of ajifferent PRC due to variation in the parametersover

single-valued system (i.e4/=0), denoted as CROP [13], 5 given range. We formulate this as an optimal ensemble

is plotted as an upper bound on the expected efficiency fag ol problem steering(0) = 0 to §(T) = 2=
the ensemble case. As a dissipative system, the ensemble

case is not expected to fully compensate for the ensemble min 7 — /T 12(t) dt
variation, but achieves a more uniform transfer efficiency 0
with a small error from this upper bound. Consideration of st 0= w(a)+ Z(0,a)l,

the ensemble control problem as in (27) is motivated by
the efficiency corresponding to a single-valued optimarati
(gray dashed line in Figure 1), which performs well at thavhere D is an interval containing a nominal parametey.

I <A, vte[0,T], «a € DCR? (28)
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Fig. 3. The Fourier representation of the phase responsesuworre-
sponding to the ensemble in Figure 2. Although the originhef parameter
S variation is small the PRC shifts dramatically.

M2

rent results on the convergence of these methods. Character
izing the conditions of convergence is key to understanding

04 the abilities and limitations of the approach as well as to
02 establish the credibility of the solutions generated witb t
. 00 —— 7 ﬁ\ met_hods. We provide examples to |Ilust_rf_;1te the technigde an
£ §\ A motivate the convergence results empirically.
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VIIl. CONCLUSION

The pseudospectral method and the more recent multi-
dimensional pseudospectral method are effective computa-
tional methods to solve challenging optimal control protde
on complex systems. Here we consolidate and extend the cur-



