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Abstract— Pseudospectral approximation techniques have
been shown to provide effective and flexible methods for solving
optimal control problems in a variety of applications. In this
paper, we provide the conditions for the convergence of the
pseudospectral method for general nonlinear optimal control
problems. Further, we show that this proof is directly extendible
to the multidimensional pseudospectral method for optimal
ensemble control of a class of parameterized dynamical systems.
Examples from quantum control and neuroscience are included
to demonstrate the method.

I. INTRODUCTION

Optimal control is a systematic and powerful approach to
characterize a wide variety of problems arising in all areas
of science and engineering. Many computational methods
have been developed to solve these challenging problems.
In the past two decades, a pseudospectral method for dis-
cretizing a continuous-time optimal control problem into
a finite dimensional constrained nonlinear optimization has
garnered significant interest and found application in research
ranging from the design of satellite maneuvers [1] to the
control of quantum phenomena [2]. In addition, a multi-
dimensional extension has been developed to apply these
methods to parameterized families of dynamical systems,
arising in such areas as quantum control and neuroscience
[3], [4], [5]. Despite widespread use, only recently has the
literature addressed the important topic of convergence of
the pseudospectral method.

Substantial work, including proof of convergence and the
corresponding rates, has been done for systems that belong to
the class of feedback linearizable form [6]. As there are many
systems that do not conform to this specialized dynamics
- for example, ensemble systems, as described in Section
VI, do not belong to this category - analysis for general
systems is of keen interest. Gong et al. have also shown major
components of convergence with regard to general systems,
including the convergence of the dual problem [1]. Here we
extend these results and relax the necessary assumptions.
In particular, we use results from polynomial approximation
theory to make the proof more transparent and touch upon
the convergence of the multidimensional extension.
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We briefly introduce a standard optimal control prob-
lem and review the pseudospectral method to provide a
foundation for the proof. Several useful preliminary results
are developed before we present the main result in section
V. We then discuss the multidimensional extension for the
pseudospectral method and comment on the convergence in
section VI. We conclude by showing illustrative examples
from quantum control and neuroscience.

II. PROBLEM STATEMENT

Without loss of generality, we consider an optimal control
problem defined on the time intervalΩ = [−1, 1].

Problem 1 (Continuous-Time Optimal Control):

min J(x, u) = ϕ(x(1)) +

∫ 1

−1

L(t, x(t), u(t))dt, (1)

s.t. ẋ(t) = f(x(t), u(t)), (2)

e(x(−1), x(1)) = 0, (3)

g(x(t), u(t)) ≤ 0, (4)

‖u(t)‖ ≤ A, u ∈ Hα
m(Ω), α > 2 (5)

whereϕ ∈ C0 is the terminal cost; the running cost,L ∈
Cα, whereCα is the space of continuous functions withα
classical derivatives, and dynamics,f ∈ Cα−1

n , whereCα−1
n

is the space ofn-vector valuedCα−1 functions, with respect
to its arguments the state,x(t) ∈ R

n, and control,u(t) ∈
R

m; e andg are terminal and path constraints, respectively;
Hα

m(Ω) is the m-vector valued Sobolev space. The norm
associated with the Sobolev space withm = 1, Hα(Ω), is
given with respect to theL2(Ω) norm,
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An optimal nonlinear control problem of this form is, in
general, intractable and difficult to solve analytically. Here
we use a direct collocation approach based on pseudospectral
approximations to discretize this problem into a finite dimen-
sional constrained nonlinear optimization. In the following
section we review the key concepts of the pseudospectral
method for optimal control.

III. PSEUDOSPECTRAL METHOD

As a collocation (interpolation) method, the pseudospectral
method uses Lagrange polynomials to approximate the states
and controls of the optimal control problem,

x(t) ≈ INx(t) =
∑N

k=0 x̄kℓk(t), (6)

u(t) ≈ INu(t) =
∑N

k=0 ūkℓk(t), (7)



where x(tk) = INx(tk) = x̄k and u(tk) = INu(tk) =
ūk because the Lagrange polynomials have the property
ℓk(ti) = δki, whereδki is the Kronecker delta function and
tk are the interpolation nodes [7]. Therefore,x̄k and ūk are
the discretized values of the original problem and become
the decision variables of the subsequent discrete problem.

Although interpolating with Lagrange polynomials dis-
cretizes Problem 1, we need to ensure that the integral in (1)
is computed accurately and the dynamics in (2) are obeyed.
The integral can be approximated through Gauss quadrature;
here we use Legendre polynomials as the orthogonal basis
for the pseudospectral method. The Legendre-Gauss-Lobatto
(LGL) quadrature approximation,

∫ 1

−1

f(t)dt ≈

N
∑

i=1

f(ti)wi, wi =

∫ 1

−1

ℓi(t)dt, (8)

is exact if the integrandf ∈ P2N−1 and the nodesti ∈
ΓLGL, where P2N−1 denotes the set of polynomials of
degree at most2N − 1 and whereΓLGL = {ti : L̇N(t)|ti =
0, i = 1, . . .N − 1}

⋃

{−1, 1} are theN + 1 LGL nodes
determined by the derivative of theN th order Legendre
polynomial,L̇N (t), and the interval endpoints [8].

Using the LGL nodes, we can rewrite the Lagrange poly-
nomials in terms of the orthogonal Legendre polynomials.
This is critical for the approximation to inherit the special
derivative and spectral accuracy properties of orthogonal
polynomials, despite the use of Lagrange interpolating poly-
nomials. Giventk ∈ ΓLGL, we can express the Lagrange
polynomials as [9],

ℓk(t) =
1

N(N + 1)LN(tk)

(t2 − 1)L̇N (t)

t− tk
.

The derivative of (6) attj ∈ ΓLGL is then,

d

dt
INx(tj) =

N
∑

k=0

x̄k ℓ̇k(tj) =
N
∑

k=0

Djkx̄k , (DNx)(tj),

(9)
whereD is the constant differentiation matrix [8].

We are now able to write the discretized optimal control
problem using equations (6), (7), (8), and (9). We transform
the continuous-time problem to a constrained optimization.

Problem 2 (Algebraic Nonlinear Programming):

min J̄(x̄, ū) = ϕ(x̄N ) +

N
∑

k=0

L(x̄k, ūk)wk (10)

s.t.
∣

∣

∣

∣f(INx, INu)−DNx
∣

∣

∣

∣

N
≤ cdN

1−α (11)

e(x̄0, x̄N ) = 0 (12)

g(x̄k, ūk) ≤ 0 (13)

‖uk‖ ≤ A ∀ k = 0, 1, . . . , N (14)

wherecd is a positive constant; we define the discreteL2
n(Ω)

norm ‖h‖N =
√

〈h, h〉N , for h, h1, h2 ∈ L2
n(Ω), with

〈h1, h2〉N =

N
∑

k=0

hT
1 (tk)h2(tk)wk.

Remark 1: The dynamics in (11) have been relaxed from
the equality in (9) to ensure that the discrete problem is
feasible, which will become clear in Proposition 1.

IV. PRELIMINARIES

We seek to address three questions related to solving the
continuous-time optimal control (Problem 1) by solving the
pseudospectral discretized constrained optimization (Prob-
lem 2). Suppose a feasible solution(x, u) exists to Problem
1. What are the conditions for:

1) Feasibility: For a given order of approximation,N , does
Problem 2 have a feasible solution,(x̄, ū), which are the
interpolation coefficients given in (6) and (7)?

2) Convergence: As N increases, does the sequence of
optimal solutions,{(x̄†, ū†)}, to Problem 2 have a
corresponding sequence of interpolating polynomials
which converges to a feasible solution of Problem 1?
Namely,

lim
N→∞

(INx†, INu†) = (x, u)

3) Consistency: As N increases, does the convergent se-
quence of interpolating polynomials corresponding to
the optimal solutions of Problem 2 converge to an
optimal solution of Problem 1? Namely,

lim
N→∞

(INx†, INu†) = (x∗, u∗)

The results in this section will provide the foundation
on which we can analyze the feasibility, convergence, and
consistency of the pseudospectral approximation method for
optimal control problems. We begin by presenting several
key established results in polynomial approximation theory
and the natural vector extensions. With these inequalities,
we are able then to prove feasibility and convergence. We
define an optimal solution to Problem 1 as any feasible
solution that achieves the optimal costJ(x∗, u∗) = J∗.
We use this definition of an optimal solution within the
subsequent preliminaries and the main result. To this end,
the last lemma of this section introduces the error in the
cost due to interpolation.

Remark 2: Note thatx ∈ Hα
n (Ω). Sincex(t) exists and

f ∈ Cα−1
n , all the derivativesx(k) ∈ C0

n, ∀ k = 0, 1, . . . , α
exist and are square integrable on the compact domainΩ,
x(k) ∈ L2

n(Ω). Therefore,x ∈ Hα
n (Ω).

Lemma 1 (Interpolation Error Bounds [8], p. 289): If
h ∈ Hα(Ω), the following hold withc1, c2, c3, c > 0.

(a) The interpolation error is bounded,

‖h− INh‖2 ≤ c1N
−α‖h‖(α).

(b) The error between the exact derivative and the derivative
of the interpolation is bounded,

‖ḣ−DNh‖2 ≤ c2N
1−α‖h‖(α).

The same bound holds for the discreteL2(Ω) norm,

‖ḣ−DNh‖N ≤ c3N
1−α‖h‖(α).



(c) The error due to quadrature integration is bounded,
∣

∣

∣

∣

∫ 1

−1

h(t)dt−

N
∑

k=0

h(tk)wk

∣

∣

∣

∣

≤ cN−α‖h‖(α),

wheretk is thekth LGL node andwk is the correspond-
ing kth weight for LGL quadrature.

Lemma 2: If h ∈ Hα
n (Ω), i.e., ann-vector valued Sobolev

space,h = (h1 h2 . . . hn)
T , hi ∈ Hα(Ω), i = 1, 2, . . . , n.

(a) The vector-valued extension of Lemma 1a is, by the
triangular inequality on theL2

n(Ω) norm,

‖h−INh‖2 ≤

n
∑

i=1

‖hi −INhi‖2 ≤

n
∑

i=1

ciN
−α‖hi‖(α).

(b) Similarly, 1b can be extended,

‖ḣ−DNh‖2 ≤

n
∑

i=1

‖ḣ−DNh‖2 ≤

n
∑

i=1

ciN
1−α‖hi‖(α)

≤ cN1−α,

which again also holds for the discreteL2
n(Ω) norm.

Proposition 1 (Feasibility): Given a solution (x, u) of
Problem 1, then Problem 2 has a feasible solution,(x̄, ū),
which are the corresponding interpolation coefficients.

Proof: Given the feasible solution(x, u), let
(INx, INu) be the polynomial interpolation of this solution
at the LGL nodes. Our aim is to show that the coefficients
of this interpolation satisfy (11)-(13) of Problem 2. Consider
the constraints imposed by the dynamics in (11). Because the
discrete norm is evaluated only at the interpolation points,

‖f(INx, INu)−DNx‖N = ‖f(x, u)−DNx‖N

= ‖ẋ−DNx‖N

≤ cdN
1−α

where the last step is given by Lemma 2b. Therefore, the
interpolation coefficients(x̄, ū) satisfy the dynamics of Prob-
lem 2 in (11). We can easily show that the path constraints
are also satisfied becauseg(x(t), u(t)) ≤ 0 for all t ∈ Ω by
(4). Because this holds for allt ∈ Ω, it also holds for all
LGL nodestk ∈ ΓLGL , i.e.,

g(x̄k, ūk) = g(x(tk), u(tk)) ≤ 0,

which gives (13). The endpoint constraints are trivially
satisfied by the definition of interpolation and the presence
of interpolation nodes at both endpoints. Therefore,(x̄, ū) is
a feasible solution to Problem 2.

Proposition 2 (Convergence): Given the sequence of so-
lutions to Problem 2,{(x̄, ū)}N , then the sequence of
corresponding interpolation polynomials,{(INx, INu)}, has
a convergent subsequence, such that

lim
Nj→∞

(INx, INu) = (I∞x, I∞u),

which is a feasible solution to Problem 1.

Proof: Given that (x̄, ū) is a feasible solution of
Problem 2, it satisfies (11)-(13). Our goal is to show that the
sequence of polynomials,{(INx, INu)}N , (i) is bounded,
(ii) has a convergent subsequence and (iii) its limit is a
feasible solution of Problem 1, satisfying (2)-(4).

(i) Explicitly writing out the discrete norm in (11) gives
(

N
∑

k=0

n
∑

i=1

(fi(INx, INu)−DNxi)
2(tk)

)1/2

≤ cdN
1−α.

Becausef is continuous, it satisfies

lim
N→∞

(

fi(INx, INu)−DNxi

)

(tk) (15)

=
(

fi( lim
N→∞

INxi, lim
N→∞

INu)− ( lim
N→∞

INxi)
′
)

(tk)

= 0,

which means that the derivative of the interpolating polyno-
mial and the state dynamics match at the interpolation nodes.
Moreover, asN → ∞, the LGL nodestk ∈ ΓLGL are dense
in Ω, which shows that they match along the entire domain.

(ii) The sequence{INx} is a sequence of polynomials
on the compact domainΩ, therefore, for each finiteN ,
INx ∈ Hα

n (Ω). In the limit, we showed above in (15) that
(limN→∞ INx)′ matches the state dynamicsf ∈ Cα−1

n , so
that{INx} are bounded, becausef is bounded overΩ, and
also satisfyINx ∈ Hα

n (Ω) for all N . With the boundedness
of these interpolating polynomials{INx} all supported in
Ω, Rellich’s Theorem (cf., e.g., [10], p. 272) gives that there
is a subsequence{INj

x} which converges inHα−1
n (Ω).

The same is true for the control interpolating polynomial.
Therefore, there exists at least one limit point of the function
sequence{(INx, INu)} which we denote(I∞x, I∞u).

(iii) Because{INx}N has a convergent subsequence, we can
express (15) as

d

dt
(I∞x)(tk) = f(I∞x, I∞u)(tk), (16)

which states that(I∞x, I∞u) satisfies the dynamics in (2)
at the interpolation nodes. Again, asN → ∞, the LGL
nodestk ∈ ΓLGL are dense inΩ, which further shows that
(I∞x, I∞u) satisfies the dynamics of Problem 1 at all points
on the intervalΩ. Similarly, one can prove that this solution
satisfies the path constraints because the LGL nodes become
dense inΩ asN → ∞ andg(x̄k, ūk) = g(x(tk), u(tk)) ≤ 0
at all LGL nodes. Again, the endpoint constraints are met
exactly because the LGL grid has nodes at the endpoints.

Lemma 3: Given (x, u), where x ∈ Hα
n (Ω) and u ∈

Hα
m(Ω), and the corresponding interpolation coefficients,

(x̄, ū), then the error in the cost functionals defined in (1)
and (10) due to interpolation is given by,

|J(x, u)− J̄(x̄, ū)| ≤ cN−α.

Remark 3: Notice that(x, u) and (x̄, ū) are not required
to be a feasible solutions to Problem 1 and 2, respectively.
This result characterizes the error due to interpolation.



Proof: From (2) and (11) sinceϕ(x(1)) = ϕ(x̄N ),

|J(x, u)− J̄(x̄, ū)| =

∣

∣

∣

∣

∫ 1

−1

L(x, u)dt −
N
∑

k=0

L(x̄k, ūk)wk

∣

∣

∣

∣

.

Since L ∈ Cα, x ∈ Hα
n (Ω), and u ∈ Hα

m(Ω), the
composite functionL̃(t) = L(x(t), u(t)) ∈ Hα(Ω). Let
Lk = L(x̄k, ūk). Substituting these definitions and employ-
ing Lemma 1c, we obtain

∣

∣

∣

∣

∫ 1

−1

L̃(t)dt−

N
∑

k=0

Lkwk

∣

∣

∣

∣

≤ cN−α‖L̃(t)‖(α).

BecauseL̃ ∈ Hα(Ω), ‖L̃(t)‖(α) is finite, from which the
result follows.

V. MAIN RESULT

Theorem 1 (Consistency): Suppose Problem 1 has an op-
timal solution (x∗, u∗). Given a sequence of optimal so-
lutions to Problem 2,{(x̄†, ū†)}N , then the corresponding
sequence of interpolating polynomials,{(INx†, INu†)}N ,
has a limit point,(I∞x†, I∞u†) which is an optimal solution
to the original optimal control problem.

Proof: We break the proof into four sections, employing
the results from the previous section.

(i) By Proposition 1, since(x∗, u∗) is a solution to Problem
1, then for each choice ofN , the corresponding interpolation
coefficients,(x̄∗, ū∗), are a feasible solution to Problem 2.
By the definition of optimality of(x̄†, ū†),

J̄(x̄†, ū†) ≤ J̄(x̄∗, ū∗). (17)

(ii) By Proposition 2, the limit point of the polynomial
interpolation of the discrete optimal solution to Problem
2, limN→∞(INx†, INu†) = (I∞x†, I∞u†), is a feasible
solution of Problem 1. Therefore, we have, by the definition
of the optimality of(x∗, u∗) and the continuity ofJ ,

J(x∗, u∗) ≤ lim
N→∞

J(INx†, INu†) (18)

= J(I∞x†, I∞u†).

(iii) Using Lemma 3, we can bound the error in the cost
between the optimal solution of Problem 1,(x∗, u∗), and
the corresponding interpolating coefficients,(x̄∗, ū∗), as

|J(x∗, u∗)− J̄(x̄∗, ū∗)| ≤ c1N
−α. (19)

Similarly, we can bound the error in the cost between the
optimal solution of Problem 2,(x̄†, ū†), and the polynomial
interpolation of this solution,(INx†, INu†), as

|J(INx†, INu†)− J̄(x̄†, ū†)| ≤ c2N
−α. (20)

Recall that Lemma 3 does not require(INx†, INu†) to be
a feasible solution of Problem 1. From (19) and (20),

lim
N→∞

J̄(x̄∗, ū∗) = J(x∗, u∗), (21)

lim
N→∞

[

J(INx†, INu†)− J̄(x̄†, ū†)
]

= 0. (22)

(iv) We are now ready to assemble the various pieces of this
proof. Combining (21) and (17) we have,

lim
N→∞

J̄(x̄†, ū†) ≤ lim
N→∞

J̄(x̄∗, ū∗) = J(x∗, u∗).

Adding the result from (18),

lim
N→∞

J̄(x̄†, ū†) ≤ J(x∗, u∗) ≤ lim
N→∞

J(INx†, INu†).

(23)
Since the difference between the left and right sides, as
given by (22), decreases to zero asN → ∞, the quantities
J̄(x̄†, ū†) andJ(INx†, INu†) converge toJ(x∗, u∗), i.e.,

0 ≤ lim
N→∞

[

J(x∗, u∗)− J̄(x̄†, ū†)
]

≤ lim
N→∞

[

J(INx†, INu†)− J̄(x̄†, ū†)
]

= 0.

Thus the optimal discrete cost̄J(x̄†, ū†) of Problem 2 and the
continuous costJ(INx†, INu†) of the corresponding inter-
polation polynomials converge to the optimal costJ(x∗, u∗)
of Problem 1. Moreover,(I∞x†, I∞u†) is a feasible solution
to Problem 1 and achieves the optimal cost. Therefore,
(I∞x†, I∞u†) is an optimal solution to Problem 1.

VI. ENSEMBLE EXTENSION

Ensemble Control pertains to the study of a continuum of
dynamical systems of the form [11], [12],

d

dt
x(t, s) = f

(

t, s, x(t, s), u(t)
)

, (24)

which is indexed by a parameter vector that exhibits variation
within an interval, s ∈ S ⊂ R

d but controlled by the
open loop inputu(t). Such systems arise from environmental
interactions, uncertainty, or inherent variability that induces
inhomogeneity in the characteristic parameters of the dynam-
ics. An optimal ensemble control problem is formulated by
replacing the dynamics with the ensemble dynamics in (24)
and the cost with,

J =
(

∫

S

ϕ(x(1, s)) +

∫ 1

−1

L(x(t, s), u(t))dt
)

ds, (25)

and the end and path constraints are extended in a straight-
forward manner. The method employsd + 1 dimensional
interpolating polynomials to representx and u with the
approximate dynamics (compare to (9)) given by [4],

d

dt
IN×Ns1

×···×Nsd
x(t, sj) =

N
∑

k=0

Dikx̄kj1 ...jd , (26)

wheres = (s1, s2, . . . , sd)
′ ∈ S ⊂ R

d. This extension hinges
upon the lack of time dependence in the new dimensions
of the problem (d parameter dimensions). Propositions 1
and 2 can then be extended in a straightforward manner
by incorporating additional dynamics constraints that act
in parallel. Lemma 3 will include gaussian quadrature ap-
proximations of both thes and t integrals. With these
limited modifications, the approach above guarantees the
convergence of the multidimensional pseudospectral method
applied to optimal ensemble control problems.



VII. EXAMPLES

In this section we demonstrate the multidimensional
pseudospectral method and the convergence of the method
through examples from quantum control and neuroscience.

A. POLARIZATION TRANSFER IN NMR

Polarization transfer is an important fundamental tech-
nique used in NMR spectroscopy to reveal the structure
of complex biomolecules and has far-reaching impacts on
our understanding of, e.g., cell signaling and drug deliv-
ery. Optimal control techniques have achieved significant
advancements in pulse design, which in turn yield increased
efficiencies in polarization transfer [13], [2], [3]. Physical
models of this transfer contain parameters that are perturbed
by the chemical environment surrounding the system. It is
possible for the spin coupling variation to be on the same
order as the value of the nominal coupling, for example 5-13
Hz in a HNCα protein. Recent studies of such ensemble po-
larization transfer have used an optimal control formulation
given by,

max η =
1

2δJ

∫ 1+δJ

1−δJ

x6(T, J) dJ

s.t.
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ẋ2

ẋ3

ẋ4
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,

x(0, J) = [1 0 0 0 0 0]′,
√

u2
1(t) + u2

2(t) ≤ A, ∀t ∈ [0, T ], (27)

where the transfer efficiency (cost)η maximizes the value
of x6 over the ensemble at the terminal timeT ; xi are
expectation values of components of the spin operators;J ∈
[1− δJ, 1+ δJ ], δJ ∈ (0, 1), is the scalar coupling between
spins exhibiting variation;ξa and ξc are autocorrelated and
cross-correlation relaxation rates, respectively;u1 and u2

are the applied pulses (controls); andA is the maximum
allowable amplitude [2]. The dynamics and parameters are
normalized by a nominal scalar couplingJ0.

Figure 1 displays the convergence of the multidimensional
pseudospectral method as the order of approximation,N ,
increases and corresponding to solutions of (27) with a
30 Hz variation around the nominal scalar couplingJ0 =
93 Hz (δJ = 30/93 ≈ 0.32 in the normalized case).
The analytically derived optimal transfer efficiency of a
single-valued system (i.e.,δJ=0), denoted as CROP [13],
is plotted as an upper bound on the expected efficiency for
the ensemble case. As a dissipative system, the ensemble
case is not expected to fully compensate for the ensemble
variation, but achieves a more uniform transfer efficiency
with a small error from this upper bound. Consideration of
the ensemble control problem as in (27) is motivated by
the efficiency corresponding to a single-valued optimization
(gray dashed line in Figure 1), which performs well at the

CROP

(N,NJ) = (6,3)

(7,3)

(8,3) (9,3)
(11,3)
(15,3)
(19,3)
(23,3)(23,1)

Fig. 1. A series of solutions to the problem of polarization transfer achieved
by the multidimensional pseudospectral method. The level of discretization,
N is increased illustrating the rapid convergence characteristic of the
pseudospectral method. The analytically derived optimal transfer efficiency
for the single-valued system, CROP [13], provides an upper bound on
the expected ensemble efficiency. A single-valued pseudospectral optimized
solution (gray dashed line) achieves a narrow window of performance with
degraded performance on the edges of the variation, which prompts us to
specifically consider the ensemble variation. (Parameters: J ∈ [63, 123] Hz,
ξa = 183 Hz, ξc = 163 Hz, T = 25ms, A=50 Hz)

nominal parameter value, but degraded performance at the
edges.

B. SPIKING OF NEURON OSCILLATORS

The dynamic interactions of neurons in the human brain
are often modeled as a network of weakly connected nonlin-
ear oscillators [14]. Each individual neuron can be modeled
by a systemẋ = f(x, I, α) with an attractive, non-constant,
periodic limit cycle, wherex(t) ∈ R

n, I(t) ∈ R, andα ∈ R
p

are the state, control, and parameter set, respectively. This
can be reduced to a scalar system, called a phase model,
of the form θ̇ = ω(α) + Z(θ, α)I, whereθ(t) is a phase
variable that represents the position ofx(t) near the limit
cycle,ω(α) is the natural frequency,I(t) is the control, and
the phase response curve (PRC)Z(θ, α) is a 2π-periodic
function of θ, which quantifies the shift inθ due to an
infinitesimal perturbation inx [15]. The reduction is valid
for bounded input, i.e.|I| ≤ A, and provides a theoretical
basis for controlling the spiking period of a neuron [5]
where the objective of minimum control power arises from
physiological considerations. In an experimental or clinical
setting, it is often desirable to synchronize the spiking period
T of a collection of neurons, each of which has a slightly
different PRC due to variation in the parametersα over
a given range. We formulate this as an optimal ensemble
control problem steeringθ(0) = 0 to θ(T ) = 2π,

min η =

∫ T

0

I2(t) dt

s.t. θ̇ = ω(α) + Z(θ, α)I,

|I| ≤ A, ∀t ∈ [0, T ], α ∈ D ⊂ R
p (28)

whereD is an interval containing a nominal parameterα0.
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Fig. 2. Solutions to the neuron phase model using a Fourier representation
of the PRC. The control inputs (top) were generated by considering the nom-
inal and ensemble cases individually. The corresponding state trajectories
(middle) of a 3-neuron ensemble show divergence and convergence of the
states following the nominal and ensemble control, respectively. The differ-
ence between the nominal trajectory following the nominal control and each
of the other state trajectories (bottom) shows the compensating behavior of
the ensemble input more clearly. (Parameters:gNa = 120 mS/cm2±10%)

Consider the Hodgkin-Huxley model, which describes the
propagation of action potentials in a squid axon, and is a
canonical example of neural oscillator dynamics [16], witha
nominal spiking periodτ0 = 14.638. Suppose that we wish
to synchronize the spiking of neurons to periodτ = 14 when
sodium conductancegNa varies on the interval[108, 132]
mS/cm2, with nominal value120 mS/cm2. From the PRCs
for the nominal and extreme cases shown in Figure 3, we
see that the variation is significant, and indeed the spiking
period τ = 2π/ω(α) varies from14.070 to 15.971. The
optimal ensemble control method is applied to solve (28)
for this example, whereα = gNa is a scalar sampled at
LGL nodes, and the PRCs are represented using a Fourier
approximation for the computation. Figure 2 shows the
computed optimal control, the trajectories, and the difference
between the solutions and the nominal trajectory. When the
nominal control is applied, the phases of the neurons drift
apart, but when the optimal ensemble control is applied, the
phases cluster nearθ = 2π at t = T = τ = 14, as desired.

VIII. CONCLUSION

The pseudospectral method and the more recent multi-
dimensional pseudospectral method are effective computa-
tional methods to solve challenging optimal control problems
on complex systems. Here we consolidate and extend the cur-

π π ππ

Fig. 3. The Fourier representation of the phase response curves corre-
sponding to the ensemble in Figure 2. Although the origin of the parameter
variation is small the PRC shifts dramatically.

rent results on the convergence of these methods. Character-
izing the conditions of convergence is key to understanding
the abilities and limitations of the approach as well as to
establish the credibility of the solutions generated with the
methods. We provide examples to illustrate the technique and
motivate the convergence results empirically.
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