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Abstract—In this paper, we extend our previous results that can be used throughout all areas of open-loop quantum
concerning the application of the Legendre pseudospectral control from NMR, as illustrated in this paper, to quantum
method to optimal pulse design problems for open quantum g ics \We then present and demonstrate a computational

systems. We now consider the more realistic case in which thod b d d tral imati d optimal
systems are characterized by variations in parameter valug method based on pseudospectral approximatons and opuma

such as relaxation rates and coupling constants. Such dis- Sampling in the parameter domain that effectively diszesti
persions in system parameters motivate us to consider an the optimal ensemble control problem.
ensemble of systems, each member distinct due to distinct |4 section Il, we present the methodology behind the

parameter values. We demonstrate the method with systems . . . .
from nuclear magnetic resonance (NMR) spectroscopy in licid. numerical algorithm and the corresponding transformation

In particular, we highlight the flexibility and robustness of ~ Of the optimal control problem. In Section IIl, we use
the pseudospectral method approach by developing pulsesah two open quantum systems to highlight the flexibility and

minimize the energy or total duration of the pulse sequence. effectiveness of the pseudospectral method. These systems
| INTRODUCTION without parameter variation, have been well studied andethe

are analytic expressions of the optimal control sequeraes f

Much of scientific research in the control of quantumne single system case within existing literature [3], [4].
systems makes assumptions neglecting the interactions tha

the studied quantum system has with the environment. While
these assumptions are often valid for the cases considesed, II. METHODS
we look to close the gap between theoretical prediction and

experimental outcome, the models describing these systemspe apply the pseudospectral method for solving optimal
must become increasingly more accurate and, thus, incluggntrol problems to a class of nonunitary (open) quantum
such contributions. In addition, there are many quantuiystems for which the Markovian approximation applies.
systems for which environmental interaction cannot be nejnder this assumption, the environment is approximated
glected and these open quantum systems are characterizeg9yan infinite thermostat which remains unaltered despite
relaxation to the environmentally-induced equilibriunatet  interaction with the quantum system. The state of the system
[1]. This relaxation causes signal degradation and, theeef 3 density matrix, evolves according to Lindblad’s formula

experimental losses in signal. [5],
Furthermore, either due to lack of information regarding '
the system or to environmental interactions within theeyst p=—ilH(t), p] — L(p) , (h=1), 1)

that perturb the known values, the parameters that charac-

terize quantum system dynamics are prone to variation. Wehere H(t) is the time-dependent system Hamiltonian,
accurately represent a system with parameter variation, wehich represents the non-interacting, or unitary, evolutf
consider an ensemble of systems, each with unique parametes system while the termi(p) models relaxation (nonuni-
values, however, all driven by the same input [2]. Develgpintary dynamics) [7]. A typical control problem in such sys-
robust control pulses to produce desired evolutions whilems is a point-to-point state transfer, guiding the system
reducing the impact of relaxation and exhibiting insemgiti from an initial statep(0) to (or as close as possible to) a
to parameter variations is both an important topic for optim desired final statep(7') at the terminal timet = T. The
guantum control and a challenging problem in optimal pulsevolution in (1) can be expressed in terms of expectation

design. values,
Within, we formulate the pulse design objective as a new m
type of optimal ensemble control problem based on open i = |:Hd+zui(t)Hi:|$, (2)
guantum systems for which state feedback is either difficult =1
or impossible to attain. This is a general characterization
where z = T R™ is the state vector and
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optimal control problem with the following formulation,  weighted summation of the integrand evaluated at a specific
set of nodes,

T
min o(T,a(T)+ [ Lla(o) u(t)de 1 v 1
W [ max Y s, wi= [ ad @
st &= [Hd n Zui(t)Hz}:v 3) ! i=1 -
i=1 where N is the order of polynomial approximationy; are
e(z(0),z(T)) =0 discrete weights, and;(t) is the i"" Lagrange polynomial,
discussed below [14]. Lobatto in LGL refers to the inclusion
g9(z(t),u(t)) <0,

of the endpoints as nodes, which is necessary to discretize
whereyp and £ are the terminal and running cost terms of theoptimal control problems in order to enforce initial and
general objective function, respectivelyrepresents endpoint terminal conditions. In particular, if the integraifice Poy—_1
constraints (specifying initial and final state values)d@n and the nodes; € T'’¢L, the integral approximation is
denotes path constraints, which is a constraint that halds fexact, wheréP,_, denotes the set of polynomials of degree
all ¢ € [0,7]. In the typical problem mentioned above, the2N — 1 or less and wher& L = {t; : Ly (t)|;, = 0,i =
cost function would be chosen @$7’, 2(T)) = —z,(T) and  1,...N—1}{J{—-1,1} are theN +1 LGL nodes determined
L = 0. The general formulation in (3), however, allows usby the derivative of theN!" order Legendre polynomial,
to design other practical pulses, such as those that coenplély (¢), and the interval endpoints [12].
the desired transfer while minimizing the input energy or LGL quadrature requires we know the integrand values at

minimizing the duration of the pulse. the LGL nodes, however, th¥™ order Legendre expansions
A. Pseudospectral Method a(t) ~ Pya(t) = Sp_o Fx Li(t), (5)
In general, the nonlinear optimal control problem (3) is u(t) ~ Pyu(t) = Zi\’zo i L (t), (6)

difficult, if not impossible, to solve analytically. As them- ) . . .

plexity of the problems in quantum control increases, sucfi? not directly give us a way to discretize the states and
as considering the ensemble control case, researchertlooiE®Nrols at these nodes, i.e. the expansions coefficignts
find reliable numerical methods to solve the problem given ignd @x have no direct physical meaning. To overcome this,
(3). We present a method to convert this continuous optim4f€ approximate these Legendre expansions with interpo-

control problem into a constrained algebraic minimization@ting Polynomials, which, by definition, are equal to the
problem on a finite dimensional vector space for which there®9€ndre expansions at the interpolation nodes. Becayse an

are numerous mature numerical solvers. The pseudospectP§frpolating polynomial can be represented by Lagrange

method was originally developed to solve problems in flui@°lynomials we can represent the state and control as,
?ynamics and sifnce_ then ha(ljs be(_an sgcce[sg\;,fu[lllyO]ap[)ﬂ]ed Pya(t) =~ Inz(t) = Zg:o Trle(t), 7
0 many areas of science and engineerin , , . N
Pseudo)gpectral discretization methgds usegexpansions of o Pyult) = Inu(t) = 3 g—o uli(t), (8)
thogonal polynomials to approximate the states of the systewhere the coefficientss;, and u, are the values of the
and thereby inherit the spectral accuracy characteridtic etate and control Legendre expansions evaluated ak'the
orthogonal polynomial expansions (th® coefficient of the interpolation node, respectively, i.ePyz(t,) = Inz(ty) =
expansion decreases faster than any inverse powgr[@R].  z, andPyu(tx) = Inu(tx) = ug. The coefficients have this
Through special properties, derivatives of these orthafonproperty because the" Lagrange polynomial is character-
polynomials can be expressed in terms of the polynomialsed by taking unit value at thé™ interpolation node and
themselves, making it possible to accurately approximateero value at all other nodes such tHatt;) = dx;, where
the differential equation that describes the dynamics with d;; is the Kronecker delta function [13]. Therefore, using
algebraic relation imposed at a small number of discratinat this second approximation we can compute the integrand
points. An appropriate choice of these discretization {9in of the cost function integral at the LGL nodes ang and
or nodes, facilitates the approximation of the states a$ wel, become the decision variables of the subsequent discrete
as ensuring accurate numerical integration through Gamissiproblem.
guadrature. We expand upon these ideas below. Furthermore, the selection of LGL nodes, which are
In order to expand the state trajectories in terms of theon-uniform on[—1, 1] with quadratic spacing towards the
orthogonal polynomials, we first transform the originallpro endpoints, as interpolation nodes suppresses the spurious
lem from the time domain € [0, 7] to the rescaled domain oscillations between nodes that can be present when using
t € [-1,1] on which the polynomials are defined. Hereuniformly spaced nodes, called the Runge phenomena [15].
we use the Legendre polynomials, which are orthogonal, #dthough a closed form for the optimal nodes has not been
evaluated by the weighted? inner product, with respect achieved in the literature, the LGL nodes have been shown
to the weight,w(t) = 1 [13]. This choice of orthogonal to be close to optimal [16]. In addition, the LGL nodes
polynomial family suggests we compute the integral terrpermit us rewrite the Lagrange polynomials in terms of
of the cost function using Legendre-Gauss-Lobatto (LGLhe Legendre polynomials, which is critical to inherit the
quadrature, in which the integral is approximated by apecial derivative and spectral accuracy properties of the



orthogonal polynomials despite using Lagrange interpagat Note that ensemble systems are characterized by extra de-
polynomials. Givert;, € I'““L, we can express the Lagrangegrees of continuity without additional (partial) deriwai
polynomials as [17], relations (i.e.Vsx = 0) describing their impact on the
system. The lack of dynamics associated with the parameters

) .
l(t) = 1 ("~ 1)LN(t), (9) allows us to extend the pseudospectral method to sample
N(N + 1)Ly (tx) t—=tk these parameters in a straightforward manner. Consider now
The derivative of (7) at; € T'LCL is then, the ensemble extension of the interpolation approximation
v N in (7) with a single parameter variation, i.el,= 1 and
d . s € la,b],
EIN?L'(tj) = Z«i'kfk(tj) = ZD]’I@@I@, (20) [ ]
k=0 k=0 N B
and using (9) with the Legendre property that z(t,s) = Inxn,a(t,s) = ;xk(s)ék(ﬂ
=0
d o 7 N /N,
g1 =IO = =N+ DIn(®), ~ (z xkrms)) 0(1). (13)
D is the constant matrix with elements given by [18], k=0 Ar=0

and the ensemble extension of the approximate derivative

LIn(tj) 1 ;
i7k from (10) att; € T*“% ands; € T{EF,

L (tk) tj—tk

SNED k=0

N Ng
d <
Dj = (11) Jp ity sg) = > Dy (E xkrzr(sj)>
k=0 =0

N
0 otherwise = kz_o Di Ty, (14)

We are now in a position to write the discretized Optima{/vhere:fkj — a(tx, 5;). In (13) and (14) we have effectively
control problem using equations (4), (7), (8), and (10)yseq 4 two dimensional interpolating grid at thé + 1

we transform_the_ continuous-time problem in (3) to the, g Ng + 1 LGL nodes in time and the parameter, respec-
constrained minimization problem tively. Using these equations in conjunction with the LGL

7N guadrature rule, we construct the ensemble pseudospectral
min o(T,Zn) + 3 ZE(:EZ-, Ui)w; discretization of the optimal ensemble control problem as
1=0
N N
N m b— a T
T : = - = . N N
s.t. ZDjkjk = 5 [Hd + Z@ini} Zj, min 2 ZO {SD(T7 xNT) + 2 2‘6(‘%”711‘1)“}1' ]wr
k=0 i=1 "= =
N m
e(Zo, Tn) =0 _ T7, ., .
5 ; . s.t. ZDjkka = —[Hd—l—Zuini]ij,
g(z;,u;) <0, Vje{0,1,....,N}, P 2 P
where @;;,i = 1,...,m, are components of the vec- e(Zor, Tnr) = 0, .
tor w; denoting the value of the control functiom; at 9@ i) <0, ¥ j€{0,1,...,N} (15)
the ;" LGL node t;, namely,a; = (d1j,...,%m;)" = =T T edo,1,. .., NG}
(ur(ts)s - um(ty)"

whereu;; is the value of the control function; at the 51
B. Optimal Ensemble Sampling LGL nodet;.

In this paper, we are interested in considering the more
practical case in which the matricdd; and H; in (2),
and therefore, the states are indexed by certain parameter®pen quantum systems, such as those in NMR of liquids,
within the dynamics which is due to environmental effectsgxhibit several known parameter variations. The relaxatio
for example relaxation rate dispersion. This introduces ariate, the rate at which the system dissipates by interacting
other dimension (or dimensions) of continuity that must b&ith the environment, can have uncertainty or variation.
discretized to fit within the constrained minimization mmdh Coupled spin systems are modeled as two separate systems
Consider thei-dimensional parameterc I; x I, x ... x I;,  With a coupling constant that determines the interacticsh an

. EXAMPLES & RESULTS

such that eachs; exists within a known intervall, = is also prone to variation [7], [19]. In this section we calesi
[a;,b;] C R, then the corresponding ensemble dynamicdwo ensemble systems that have been studied analytically as
equation for (2) is well as by the pseudospectral method for the single valued

m case (i.e. without considering variation) [3], [4], [8]. &h
it s) = {Hd(s) + Zui(t)Hi(S)]x(t, s) . (12) analytic results allow us to compare the performance of the
P} ensemble pseudospectral to a known criteria.



new control objective is to maximiz§£]2 24(T, €)d¢ given

4 T T -
— z(0,-) = (1,0,0,0). The singles, singleJ valued case has
o — been analyzed analytically and corresponding analytisgyul
E 31 denoted ROPE [3], achieves the optimal transfer given by
5 the relation
IS 2
5 21 ¢ ¢
S = = 1-=. 17
s i=y(5) +1-% a7)
C
S 1\ Therefore, the ROPE pulse generates a new pulse solution
(u1(t),uz(t)) for each choice of¢ and J, whereas the

8.0' T T ensemble pulse is a single. pulse solution that can be used
time for all values of¢ € &1, &;] simultaneously.
(a) Ensemble Pseudospectral Optimized Pulse We used the ensemble pseudospectral method to solve
this problem over the ensemble internvl € [0,2]. The

1.0 : : optimization was implemented in the AMPL modeling lan-
— ROPE guage and then handed to the nonlinear solver KNITRO
0.9} — Ensemble PS [ from Ziena Optimization. The pseudospectral method, due

to the use of orthogonal polynomials, is characterized by
low numbers of discretization and sampling. In the case
presented in Fig. 1, time was discretized Ny= 28 nodes
and the relaxation parameter was sampled My = 8
nodes. The transfer efficiency corresponding to the ensembl
pseudospectral optimized pulse in Fig. la is plotted (red)
in Fig. 1b against and compares favorably to the single
single J valued optimal ROPE efficiency (black). The pulse

o
g9
:

o
n
T

transfer efficiency
o
[®)]

0.4} in Fig. 1a was achieved using a free terminal time as well
as a combined maximum transfer efficiency and normalized
0.3 minimum energy objective function,
0 ] ; ; max energy
'6.0 0.5 1.0 1.5 2.0 1 Ne 1 T
relaxation parameter, § max J = — 24(T,&) — —— / 2(¢ 2
= 4 U + us(t) dt
(b) Transfer Efficiency over the Ensemble Ng ; ( > AT 0 M
! L, energy
Fig. 1. The ensemble optimal control pulse (a) effectivebynpensates «, efficiency transfer

for all variations of¢ on the interval [0,2] with only minor losses in ) ) )
transfer efficiency (b) when compared to each analytic RCREfficiency where A is the maximum allowed amplitude and thewere

for a single value of¢. This optimal ensemble pulse was developed bysampled at theVe + 1 LGL nodes mapped to the domain
maximizing average transfer efficiency and minimizing gyewith N = 28 ¢ . .
and N = 8 and free terminal time. [0,2]. The choice of cost function can ha\{e a dramatic

influence on the performance of the optimization so the

ability to easily switch between and conglomerate differen
A. Spin Pair without Cross-Correlated Relaxation cost functions an_d constraints highlights one of the major

) ) o advantages of using the pseudospectral method over the cur-
We first consider a polarization transfer between tWogn; state-of-the-art algorithms in pulse design. In addjt

heteronuclear spins. It has been shown that this problefere is no time dedicated to the tedious offline calculation
can be reduced to maX|m|§|ng4(T) sub_ject to the |n|t|§1I of the gradient(0.7 /du1, 0.7 /dus)T, where T is the cost
condition z(0) = (1,0,0,0)" and obeying the governing fnction. Customizing the pseudospectral implementaton
dynamics a specific system is as straightforward as writing down the
optimal control problem, as in (15).

T 0 —u 0 0 T

:C; u _51 —J 0 :C; We extend this example further to include the possible
s | =0 T e —u R (16)  variation in the coupling strength] € [1 — §,1 + d]. The

iy 0 0 Uy 0 74 problem becomes a multidimensional sampling problem in

both ¢ and J to develop a pulse that is robust to both
wherex; are expectation values of the original spin compoparameter variations. Adapting the previous optimization
nents¢ € [&1,&2] is the relaxation parametef,€ [1—§,1+ code to incorporate the variation in the spin-spin coupling
8], 0 < § < 1, is the spin-spin coupling constant, ang(¢) is straightforward and does not require any additional of-
and us(t) are the applied controls [8], [3]. We first focusfline computation or analysis. Fig. 2 depicts such a two-
on variations in the relaxation parameter alone, devetppirdimensional ensemble solution fa¥ = 24, N, = 8,
a pulse robust to alf € [¢1,&:] while fixing J = 1. The and N; = 4. The control pulse in Fig. 2a simultaneously
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Fig. 2. The ensemble optimal control pulse shown in (a) &ffely iy 3 The ensemble optimal control pulse (a) effectivelynpensates for
compensates for all variations gbn the interval0, 2] andJ on the interval ;"\ /ariations oféq (€. = 0.75¢4) on the interval[0, 1] with only minor
[0-5, .1.'5} with com_paraple efficiency (b) to each ROPE pulse [3]. f(_)r_ Josses in the transfer efficiency (b) when compared to eaalytam CROP
specific€ andJ. This optimal ensemble pulse was developed by mammlmngbulSe designed for a single value &f [4]. This optimal ensemble pulse
average transfer efficiency and minimizing energy with= 24, N¢ = 8, was developed withV — 28 and N; = 6

and N; = 4 and free terminal time. €a ’

- B. Spin Pair with Cross-Correlated Relaxation

compensates for the variation §ne [0,2] and.J € [0.5, 1.5] = )

while achieving a transfer efficiency (Fig. 2b) that compare | N€ first example system corresponded to a problem of po-
favorably with each ROPE pulse, which again is optimizedffization transfer between two spins in which we negleated
for a single choice of and.J. As with the prior optimiza- specific type of relaxation due tollnterference effectsechll
tion, the cost function was selected to have both minimurRD-CSA cross-correlated relaxation [4]. In some quantum
energy and maximum transfer components, however, noyenarios this effect cannot be neglected, e.g. for large
the maximum transfer contribution is written as a doubl@0lecules, and admits a more complicated dynamical model.

summation, taking an average of the transfer efficiency oveliS coherence transfer problem is described by mTaximizing
all choices of¢ and J. It is insightful to note that by <6(7) Subjectto the initial state(0) = (1,0,0,0,0,0)" and

employing the minimum energy cost function component itN€ dynamics

addition to the maximum transfer efficiency cost function, [ 4, 0 —u; uy O 0 0 1
the pseudospectral method is able to sefleesolution with @o u =€ —w —J =& 0 Zo
minimum energy from the many that achieve the maximum| ;. —uy w =& =& J 0 x5
efficiency - not easily implemented with current methods. | ;, 0 J =& =& w —u x4 |
The inherent smoothness of the polynomial curves makeg ;. 0 —& —J —w =& w x5
these pulses easier to implement and, therefore, morg likel | 0 0 0 wuy —u; O T6

for the simulation to match the experimental outcome. (18)



where againz; are expectation values of the original spin Manipulating quantum systems is a rich field for optimal
componentss, € [.1, &q2] is the relaxation parameter as incontrol problems and we are at the beginning of adapting
the previous systent,. € [£.1,&c2] is the relaxation param- the pseudospectral method to quantum control. Such systems
eter corresponding to newly introduced interference &ffec are beset with parameters that show variation due to many
J is the spin-spin coupling constant,is the frequency, and environmental interactions. Variation in natural freqoeis
u1(t) andusy(t) are the applied controls [8]. In this problemcommon amongst almost all spin systems in which interac-
we now consider the variatiof), € [0,1] and we select the tions with the surrounding molecules causes shifts in tae fr
case in whiché, = 0.75¢,, J = 1, and the frequency does quency. On a bulk level these individual shifts are observed
not show variation, i.ew = 0 in the rotating frame. The as Larmor dispersion in which the sample frequency lies in
single ¢, valued system has been studied analytically and band[wy, — B,wo + B], B > 0, about a central frequency
the so-called CROP [4] control yields a transfer efficiency,. Designing a broadband (robust to variationuih pulse
again given by (17), but in whick now takes the value,  for the system in (18) is of particular interest for our figur
work. While the pseudospectral method empirically exbibit
£2-¢2 exponential convergence, a formal proof of convergence
14+&2 exists for only a small class of systems. We aim to extend
these results to a broader family of systems, which includes

§ (19)

Keeping the coupling constant and frequency fixed, Wgygse studied for pulse sequence design.

used the ensemble pseudospectral method to solve this
problem over the intervaf, € [0, 1], & = 0.75&,. Imple-
mented in the same manner as the previous problem, Figi)
3a shows the ensemble optimized pulse for= 28 and

N¢, = 6. This discrete optimal control problem includes [2]
28 x (6 states+ 2 controlg = 224 decision variables. In [3]
conservative estimate, a gradient method would U&&)
points to discretize the time axis, leading to a minimum
of 1000 x (2 controlg = 2000 decision variables - almost
a 10 fold increase over the pseudospectral method. The
corresponding ensemble transfer efficiency curve is plotte
Fig. 3b in red along with the optimal singfge value CROP,;

in black. Again, an excellent agreement is exhibited suah th
the one ensemble control pulse computed by the pseudospeﬁ-
tral method, robust to all values ¢f < [0, 1], is comparable

to all of the single¢, valued CROP pulses. Although the [8]
system definition required more states to characterize the
dynamics, the pseudospectral method was quickly and easily)
adapted to this modified problem definition.

(6]

IV. CONCLUSION 1ol
As pulse sequence design for quantum systems beconﬂaﬁ
more complex, such as the consideration of parameter vari-
ation, these challenging problems require increasinglyemol2]
flexible numerical methods to find solutions. We present he &
a highly adaptable framework based on pseudospectral dis-
cretization methods which converts the continuous optim&#4
control problem to a constrained minimization problem on fs)
finite dimensional vector space. This methodology admits a
natural extension to consider optimal sampling for ensesbl [16]
of quantum systems, indexed by variations in parameter,
values. In our previous work, we illustrated the ability of
the pseudospectral method to match the performance B8]
analytic and gradient-based control pulses while at theesam
time allowing for more diverse cost function options and
faster convergence rates [8]. Taking the same two examplgégl
from liquid NMR, we demonstrated the ability of the pseu-
dospectral method to extend these results to the ensemble
case, where the open quantum systems are characterized by
variations in relaxation rates and coupling constants.
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