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Abstract— In this paper, we extend our previous results
concerning the application of the Legendre pseudospectral
method to optimal pulse design problems for open quantum
systems. We now consider the more realistic case in which
systems are characterized by variations in parameter values,
such as relaxation rates and coupling constants. Such dis-
persions in system parameters motivate us to consider an
ensemble of systems, each member distinct due to distinct
parameter values. We demonstrate the method with systems
from nuclear magnetic resonance (NMR) spectroscopy in liquid.
In particular, we highlight the flexibility and robustness of
the pseudospectral method approach by developing pulses that
minimize the energy or total duration of the pulse sequence.

I. INTRODUCTION

Much of scientific research in the control of quantum
systems makes assumptions neglecting the interactions that
the studied quantum system has with the environment. While
these assumptions are often valid for the cases considered,as
we look to close the gap between theoretical prediction and
experimental outcome, the models describing these systems
must become increasingly more accurate and, thus, include
such contributions. In addition, there are many quantum
systems for which environmental interaction cannot be ne-
glected and these open quantum systems are characterized by
relaxation to the environmentally-induced equilibrium state
[1]. This relaxation causes signal degradation and, therefore,
experimental losses in signal.

Furthermore, either due to lack of information regarding
the system or to environmental interactions within the system
that perturb the known values, the parameters that charac-
terize quantum system dynamics are prone to variation. To
accurately represent a system with parameter variation, we
consider an ensemble of systems, each with unique parameter
values, however, all driven by the same input [2]. Developing
robust control pulses to produce desired evolutions while
reducing the impact of relaxation and exhibiting insensitivity
to parameter variations is both an important topic for optimal
quantum control and a challenging problem in optimal pulse
design.

Within, we formulate the pulse design objective as a new
type of optimal ensemble control problem based on open
quantum systems for which state feedback is either difficult
or impossible to attain. This is a general characterization
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that can be used throughout all areas of open-loop quantum
control from NMR, as illustrated in this paper, to quantum
optics. We then present and demonstrate a computational
method based on pseudospectral approximations and optimal
sampling in the parameter domain that effectively discretizes
the optimal ensemble control problem.

In Section II, we present the methodology behind the
numerical algorithm and the corresponding transformation
of the optimal control problem. In Section III, we use
two open quantum systems to highlight the flexibility and
effectiveness of the pseudospectral method. These systems,
without parameter variation, have been well studied and there
are analytic expressions of the optimal control sequences for
the single system case within existing literature [3], [4].

II. METHODS

We apply the pseudospectral method for solving optimal
control problems to a class of nonunitary (open) quantum
systems for which the Markovian approximation applies.
Under this assumption, the environment is approximated
by an infinite thermostat which remains unaltered despite
interaction with the quantum system. The state of the system,
a density matrix, evolves according to Lindblad’s formula
[5],

ρ̇ = −i[H(t), ρ] − L(ρ) , (~ = 1) , (1)

where H(t) is the time-dependent system Hamiltonian,
which represents the non-interacting, or unitary, evolution of
the system while the termL(ρ) models relaxation (nonuni-
tary dynamics) [7]. A typical control problem in such sys-
tems is a point-to-point state transfer, guiding the system
from an initial stateρ(0) to (or as close as possible to) a
desired final stateρ(T ) at the terminal timet = T . The
evolution in (1) can be expressed in terms of expectation
values,

ẋ =
[

Hd +

m∑

i=1

ui(t)Hi

]

x , (2)

where x = (x1, . . . , xn)T ∈ R
n is the state vector and

Hd,Hi ∈ R
n×n are square matrices representingH(t) and

L [6]. The analogous problem on this transformed system is
to design inputsui(t), i = 1, . . . , m, starting from an initial
state x(0), that maximizexn(T ) subject to the dynamics
given in (2) [8]. We can then describe the pulse design



optimal control problem with the following formulation,

min ϕ(T, x(T )) +

∫ T

0

L(x(t), u(t))dt

s.t. ẋ =
[

Hd +

m∑

i=1

ui(t)Hi

]

x (3)

e(x(0), x(T )) = 0

g(x(t), u(t)) ≤ 0,

whereϕ andL are the terminal and running cost terms of the
general objective function, respectively,e represents endpoint
constraints (specifying initial and final state values), and g
denotes path constraints, which is a constraint that holds for
all t ∈ [0, T ]. In the typical problem mentioned above, the
cost function would be chosen asϕ(T, x(T )) = −xn(T ) and
L = 0. The general formulation in (3), however, allows us
to design other practical pulses, such as those that complete
the desired transfer while minimizing the input energy or
minimizing the duration of the pulse.

A. Pseudospectral Method

In general, the nonlinear optimal control problem (3) is
difficult, if not impossible, to solve analytically. As the com-
plexity of the problems in quantum control increases, such
as considering the ensemble control case, researchers lookto
find reliable numerical methods to solve the problem given in
(3). We present a method to convert this continuous optimal
control problem into a constrained algebraic minimization
problem on a finite dimensional vector space for which there
are numerous mature numerical solvers. The pseudospectral
method was originally developed to solve problems in fluid
dynamics and since then has been successfully applied
to many areas of science and engineering [9], [10], [11].
Pseudospectral discretization methods use expansions of or-
thogonal polynomials to approximate the states of the system
and thereby inherit the spectral accuracy characteristic of
orthogonal polynomial expansions (thekth coefficient of the
expansion decreases faster than any inverse power ofk) [12].
Through special properties, derivatives of these orthogonal
polynomials can be expressed in terms of the polynomials
themselves, making it possible to accurately approximate
the differential equation that describes the dynamics withan
algebraic relation imposed at a small number of discretization
points. An appropriate choice of these discretization points,
or nodes, facilitates the approximation of the states as well
as ensuring accurate numerical integration through Gaussian
quadrature. We expand upon these ideas below.

In order to expand the state trajectories in terms of the
orthogonal polynomials, we first transform the original prob-
lem from the time domaint ∈ [0, T ] to the rescaled domain
t ∈ [−1, 1] on which the polynomials are defined. Here
we use the Legendre polynomials, which are orthogonal, as
evaluated by the weightedL2 inner product, with respect
to the weight,w(t) = 1 [13]. This choice of orthogonal
polynomial family suggests we compute the integral term
of the cost function using Legendre-Gauss-Lobatto (LGL)
quadrature, in which the integral is approximated by a

weighted summation of the integrand evaluated at a specific
set of nodes,

∫ 1

−1

f(t)dt ≈
N∑

i=1

f(ti)wi, wi =

∫ 1

−1

ℓi(t)dt, (4)

whereN is the order of polynomial approximation,wi are
discrete weights, andℓi(t) is the ith Lagrange polynomial,
discussed below [14]. Lobatto in LGL refers to the inclusion
of the endpoints as nodes, which is necessary to discretize
optimal control problems in order to enforce initial and
terminal conditions. In particular, if the integrandf ∈ P2N−1

and the nodesti ∈ ΓLGL, the integral approximation is
exact, whereP2N−1 denotes the set of polynomials of degree
2N − 1 or less and whereΓLGL = {ti : L̇N(t)|ti

= 0, i =
1, . . .N−1}

⋃
{−1, 1} are theN +1 LGL nodes determined

by the derivative of theN th order Legendre polynomial,
L̇N(t), and the interval endpoints [12].

LGL quadrature requires we know the integrand values at
the LGL nodes, however, theN th order Legendre expansions

x(t) ≈ PNx(t) =
∑N

k=0 x̃kLk(t), (5)

u(t) ≈ PNu(t) =
∑N

k=0 ũkLk(t), (6)

do not directly give us a way to discretize the states and
controls at these nodes, i.e. the expansions coefficientsx̃k

and ũk have no direct physical meaning. To overcome this,
we approximate these Legendre expansions with interpo-
lating polynomials, which, by definition, are equal to the
Legendre expansions at the interpolation nodes. Because any
interpolating polynomial can be represented by Lagrange
polynomials we can represent the state and control as,

PNx(t) ≈ INx(t) =
∑N

k=0 x̄kℓk(t), (7)

PNu(t) ≈ INu(t) =
∑N

k=0 ūkℓk(t), (8)

where the coefficients̄xk and ūk are the values of the
state and control Legendre expansions evaluated at thekth

interpolation node, respectively, i.e.,PNx(tk) = INx(tk) =
x̄k andPNu(tk) = INu(tk) = ūk. The coefficients have this
property because thekth Lagrange polynomial is character-
ized by taking unit value at thekth interpolation node and
zero value at all other nodes such thatℓk(ti) = δki, where
δki is the Kronecker delta function [13]. Therefore, using
this second approximation we can compute the integrand
of the cost function integral at the LGL nodes andx̄k and
ūk become the decision variables of the subsequent discrete
problem.

Furthermore, the selection of LGL nodes, which are
non-uniform on[−1, 1] with quadratic spacing towards the
endpoints, as interpolation nodes suppresses the spurious
oscillations between nodes that can be present when using
uniformly spaced nodes, called the Runge phenomena [15].
Although a closed form for the optimal nodes has not been
achieved in the literature, the LGL nodes have been shown
to be close to optimal [16]. In addition, the LGL nodes
permit us rewrite the Lagrange polynomials in terms of
the Legendre polynomials, which is critical to inherit the
special derivative and spectral accuracy properties of the



orthogonal polynomials despite using Lagrange interpolating
polynomials. Giventk ∈ ΓLGL, we can express the Lagrange
polynomials as [17],

ℓk(t) =
1

N(N + 1)LN(tk)

(t2 − 1)L̇N (t)

t − tk
. (9)

The derivative of (7) attj ∈ ΓLGL is then,

d

dt
INx(tj) =

N∑

k=0

x̄k ℓ̇k(tj) =

N∑

k=0

Djkx̄k, (10)

and using (9) with the Legendre property that

d

dt
[(1 − t2)L̇N (t)] = −N(N + 1)LN (t) ,

D is the constant matrix with elements given by [18],

Djk =







LN (tj)
LN (tk)

1
tj−tk

j 6= k

−N(N+1)
4 j = k = 0

N(N+1)
4 j = k = N

0 otherwise.

(11)

We are now in a position to write the discretized optimal
control problem using equations (4), (7), (8), and (10).
We transform the continuous-time problem in (3) to the
constrained minimization problem

min ϕ(T, x̄N ) +
T

2

N∑

i=0

L(x̄i, ūi)wi

s.t.

N∑

k=0

Djkx̄k =
T

2

[

Hd +

m∑

i=1

ūijHi

]

x̄j ,

e(x̄0, x̄N ) = 0,

g(x̄j , ūj) ≤ 0, ∀ j ∈ {0, 1, . . . , N},

where ūij , i = 1, . . . , m, are components of the vec-
tor ūj denoting the value of the control functionui at
the jth LGL node tj , namely, ūj = (ū1j , . . . , ūmj)

T =
(u1(tj), . . . , um(tj))

T .

B. Optimal Ensemble Sampling

In this paper, we are interested in considering the more
practical case in which the matricesHd and Hi in (2),
and therefore, the states are indexed by certain parameters
within the dynamics which is due to environmental effects,
for example relaxation rate dispersion. This introduces an-
other dimension (or dimensions) of continuity that must be
discretized to fit within the constrained minimization method.
Consider thed-dimensional parameters ∈ I1 × I2 × ...× Id,
such that eachsi exists within a known intervalIi =
[ai, bi] ⊂ R, then the corresponding ensemble dynamical
equation for (2) is

ẋ(t, s) =
[

Hd(s) +

m∑

i=1

ui(t)Hi(s)
]

x(t, s) . (12)

Note that ensemble systems are characterized by extra de-
grees of continuity without additional (partial) derivative
relations (i.e.∇sx = 0) describing their impact on the
system. The lack of dynamics associated with the parameters
allows us to extend the pseudospectral method to sample
these parameters in a straightforward manner. Consider now
the ensemble extension of the interpolation approximation
in (7) with a single parameter variation, i.e.,d = 1 and
s ∈ [a, b],

x(t, s) ≈ IN×Ns
x(t, s) =

N∑

k=0

x̄k(s)ℓk(t)

≈

N∑

k=0

(
Ns∑

r=0

x̄krℓr(s)

)

ℓk(t). (13)

and the ensemble extension of the approximate derivative
from (10) atti ∈ ΓLGL andsj ∈ ΓLGL

Ns
,

d

dt
IN×Ns

x(ti, sj) =

N∑

k=0

Dik

(
Ns∑

r=0

x̄krℓr(sj)

)

=

N∑

k=0

Dikx̄kj , (14)

wherex̄kj = x(tk, sj). In (13) and (14) we have effectively
used a two dimensional interpolating grid at theN + 1
and Ns + 1 LGL nodes in time and the parameter, respec-
tively. Using these equations in conjunction with the LGL
quadrature rule, we construct the ensemble pseudospectral
discretization of the optimal ensemble control problem as

min
b − a

2

Ns∑

r=0

[

ϕ(T, x̄Nr) +
T

2

N∑

i=0

L(x̄ir , ūi)w
N
i

]

wNs
r

s.t.

N∑

k=0

Djkx̄kr =
T

2

[

Hr
d +

m∑

i=1

ūijH
r
i

]

x̄jr ,

e(x̄0r, x̄Nr) = 0,

g(x̄jr , ūj) ≤ 0, ∀
j ∈ {0, 1, . . . , N}

r ∈ {0, 1, . . . , Ns}
, (15)

where ūij is the value of the control functionui at thejth

LGL node tj .

III. EXAMPLES & RESULTS

Open quantum systems, such as those in NMR of liquids,
exhibit several known parameter variations. The relaxation
rate, the rate at which the system dissipates by interacting
with the environment, can have uncertainty or variation.
Coupled spin systems are modeled as two separate systems
with a coupling constant that determines the interaction and
is also prone to variation [7], [19]. In this section we consider
two ensemble systems that have been studied analytically as
well as by the pseudospectral method for the single valued
case (i.e. without considering variation) [3], [4], [8]. The
analytic results allow us to compare the performance of the
ensemble pseudospectral to a known criteria.



u2

u1

(a) Ensemble Pseudospectral Optimized Pulse

ξ

(b) Transfer Efficiency over the Ensemble

Fig. 1. The ensemble optimal control pulse (a) effectively compensates
for all variations of ξ on the interval [0, 2] with only minor losses in
transfer efficiency (b) when compared to each analytic ROPE [3] efficiency
for a single value ofξ. This optimal ensemble pulse was developed by
maximizing average transfer efficiency and minimizing energy with N = 28
andNξ = 8 and free terminal time.

A. Spin Pair without Cross-Correlated Relaxation

We first consider a polarization transfer between two
heteronuclear spins. It has been shown that this problem
can be reduced to maximizingx4(T ) subject to the initial
condition x(0) = (1, 0, 0, 0)T and obeying the governing
dynamics






ẋ1

ẋ2

ẋ3

ẋ4







=







0 −u1 0 0
u1 −ξ −J 0
0 J −ξ −u2

0 0 u2 0













x1

x2

x3

x4







, (16)

wherexi are expectation values of the original spin compo-
nents,ξ ∈ [ξ1, ξ2] is the relaxation parameter,J ∈ [1−δ, 1+
δ], 0 ≤ δ ≤ 1, is the spin-spin coupling constant, andu1(t)
and u2(t) are the applied controls [8], [3]. We first focus
on variations in the relaxation parameter alone, developing
a pulse robust to allξ ∈ [ξ1, ξ2] while fixing J = 1. The

new control objective is to maximize
∫ ξ2

ξ1

x4(T, ξ)dξ given
x(0, ·) = (1, 0, 0, 0)T . The singleξ, singleJ valued case has
been analyzed analytically and corresponding analytic pulse,
denoted ROPE [3], achieves the optimal transfer given by
the relation

η =

√
(

ξ

J

)2

+ 1 −
ξ

J
. (17)

Therefore, the ROPE pulse generates a new pulse solution
(u1(t), u2(t)) for each choice ofξ and J , whereas the
ensemble pulse is a single pulse solution that can be used
for all values ofξ ∈ [ξ1, ξ2] simultaneously.

We used the ensemble pseudospectral method to solve
this problem over the ensemble intervalξ ∈ [0, 2]. The
optimization was implemented in the AMPL modeling lan-
guage and then handed to the nonlinear solver KNITRO
from Ziena Optimization. The pseudospectral method, due
to the use of orthogonal polynomials, is characterized by
low numbers of discretization and sampling. In the case
presented in Fig. 1, time was discretized byN = 28 nodes
and the relaxation parameter was sampled byNξ = 8
nodes. The transfer efficiency corresponding to the ensemble
pseudospectral optimized pulse in Fig. 1a is plotted (red)
in Fig. 1b against and compares favorably to the singleξ,
singleJ valued optimal ROPE efficiency (black). The pulse
in Fig. 1a was achieved using a free terminal time as well
as a combined maximum transfer efficiency and normalized
minimum energy objective function,

max J =
1

Nξ

Nξ∑

i=0

x4(T, ξi)

︸ ︷︷ ︸

ϕ, efficiency transfer

−

max energy
︷ ︸︸ ︷

1

A2T

∫ T

0

u2
1(t) + u2

2(t)
︸ ︷︷ ︸

L, energy

dt

whereA is the maximum allowed amplitude and theξi were
sampled at theNξ + 1 LGL nodes mapped to the domain
[0, 2]. The choice of cost function can have a dramatic
influence on the performance of the optimization so the
ability to easily switch between and conglomerate different
cost functions and constraints highlights one of the major
advantages of using the pseudospectral method over the cur-
rent state-of-the-art algorithms in pulse design. In addition,
there is no time dedicated to the tedious offline calculation
of the gradient(∂J /∂u1, ∂J /∂u2)

T , whereJ is the cost
function. Customizing the pseudospectral implementationto
a specific system is as straightforward as writing down the
optimal control problem, as in (15).

We extend this example further to include the possible
variation in the coupling strength,J ∈ [1 − δ, 1 + δ]. The
problem becomes a multidimensional sampling problem in
both ξ and J to develop a pulse that is robust to both
parameter variations. Adapting the previous optimization
code to incorporate the variation in the spin-spin coupling
is straightforward and does not require any additional of-
fline computation or analysis. Fig. 2 depicts such a two-
dimensional ensemble solution forN = 24, Nξ = 8,
and NJ = 4. The control pulse in Fig. 2a simultaneously



u2

u1

(a) Ensemble Pseudospectral Optimized Pulse

ξ

(b) Transfer Efficiency over the Ensemble

Fig. 2. The ensemble optimal control pulse shown in (a) effectively
compensates for all variations ofξ on the interval[0, 2] andJ on the interval
[0.5, 1.5] with comparable efficiency (b) to each ROPE pulse [3] for a
specificξ andJ . This optimal ensemble pulse was developed by maximizing
average transfer efficiency and minimizing energy withN = 24, Nξ = 8,
andNJ = 4 and free terminal time.

compensates for the variation inξ ∈ [0, 2] andJ ∈ [0.5, 1.5]
while achieving a transfer efficiency (Fig. 2b) that compares
favorably with each ROPE pulse, which again is optimized
for a single choice ofξ andJ . As with the prior optimiza-
tion, the cost function was selected to have both minimum
energy and maximum transfer components, however, now
the maximum transfer contribution is written as a double
summation, taking an average of the transfer efficiency over
all choices of ξ and J . It is insightful to note that by
employing the minimum energy cost function component in
addition to the maximum transfer efficiency cost function,
the pseudospectral method is able to selectthe solution with
minimum energy from the many that achieve the maximum
efficiency - not easily implemented with current methods.
The inherent smoothness of the polynomial curves makes
these pulses easier to implement and, therefore, more likely
for the simulation to match the experimental outcome.

u2

u1

(a) Ensemble Pseudospectral Optimized Pulse

ξ
a

(b) Transfer Efficiency over the Ensemble

Fig. 3. The ensemble optimal control pulse (a) effectively compensates for
all variations ofξa (ξc = 0.75ξa) on the interval[0, 1] with only minor
losses in the transfer efficiency (b) when compared to each analytic CROP
pulse designed for a single value ofξa [4]. This optimal ensemble pulse
was developed withN = 28 andNξa

= 6.

B. Spin Pair with Cross-Correlated Relaxation

The first example system corresponded to a problem of po-
larization transfer between two spins in which we neglecteda
specific type of relaxation due to interference effects called
DD-CSA cross-correlated relaxation [4]. In some quantum
scenarios this effect cannot be neglected, e.g. for large
molecules, and admits a more complicated dynamical model.
This coherence transfer problem is described by maximizing
x6(T ) subject to the initial statex(0) = (1, 0, 0, 0, 0, 0)T and
the dynamics










ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6
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







=











0 −u1 u2 0 0 0
u1 −ξa −ω −J −ξc 0
−u2 ω −ξa −ξc J 0
0 J −ξc −ξa ω −u2

0 −ξc −J −ω −ξa u1

0 0 0 u2 −u1 0





















x1

x2

x3

x4

x5

x6











,

(18)



where againxi are expectation values of the original spin
components,ξa ∈ [ξa1, ξa2] is the relaxation parameter as in
the previous system,ξc ∈ [ξc1, ξc2] is the relaxation param-
eter corresponding to newly introduced interference effects,
J is the spin-spin coupling constant,ω is the frequency, and
u1(t) andu2(t) are the applied controls [8]. In this problem
we now consider the variationξa ∈ [0, 1] and we select the
case in whichξc = 0.75ξa, J = 1, and the frequency does
not show variation, i.e.ω = 0 in the rotating frame. The
single ξa valued system has been studied analytically and
the so-called CROP [4] control yields a transfer efficiency
again given by (17), but in whichξ now takes the value,

ξ =

√

ξ2
a − ξ2

c

1 + ξ2
c

. (19)

Keeping the coupling constant and frequency fixed, we
used the ensemble pseudospectral method to solve this
problem over the intervalξa ∈ [0, 1], ξc = 0.75ξa. Imple-
mented in the same manner as the previous problem, Fig.
3a shows the ensemble optimized pulse forN = 28 and
Nξa

= 6. This discrete optimal control problem includes
28 × (6 states+ 2 controls) = 224 decision variables. In
conservative estimate, a gradient method would use1000
points to discretize the time axis, leading to a minimum
of 1000 × (2 controls) = 2000 decision variables - almost
a 10 fold increase over the pseudospectral method. The
corresponding ensemble transfer efficiency curve is plotted in
Fig. 3b in red along with the optimal singleξa value CROPη
in black. Again, an excellent agreement is exhibited such that
the one ensemble control pulse computed by the pseudospec-
tral method, robust to all values ofξa ∈ [0, 1], is comparable
to all of the singleξa valued CROP pulses. Although the
system definition required more states to characterize the
dynamics, the pseudospectral method was quickly and easily
adapted to this modified problem definition.

IV. CONCLUSION

As pulse sequence design for quantum systems becomes
more complex, such as the consideration of parameter vari-
ation, these challenging problems require increasingly more
flexible numerical methods to find solutions. We present here
a highly adaptable framework based on pseudospectral dis-
cretization methods which converts the continuous optimal
control problem to a constrained minimization problem on a
finite dimensional vector space. This methodology admits a
natural extension to consider optimal sampling for ensembles
of quantum systems, indexed by variations in parameter
values. In our previous work, we illustrated the ability of
the pseudospectral method to match the performance of
analytic and gradient-based control pulses while at the same
time allowing for more diverse cost function options and
faster convergence rates [8]. Taking the same two examples
from liquid NMR, we demonstrated the ability of the pseu-
dospectral method to extend these results to the ensemble
case, where the open quantum systems are characterized by
variations in relaxation rates and coupling constants.

Manipulating quantum systems is a rich field for optimal
control problems and we are at the beginning of adapting
the pseudospectral method to quantum control. Such systems
are beset with parameters that show variation due to many
environmental interactions. Variation in natural frequency is
common amongst almost all spin systems in which interac-
tions with the surrounding molecules causes shifts in the fre-
quency. On a bulk level these individual shifts are observed
as Larmor dispersion in which the sample frequency lies in
a band[ω0 − B, ω0 + B], B > 0, about a central frequency
ω0. Designing a broadband (robust to variation inω) pulse
for the system in (18) is of particular interest for our future
work. While the pseudospectral method empirically exhibits
exponential convergence, a formal proof of convergence
exists for only a small class of systems. We aim to extend
these results to a broader family of systems, which includes
those studied for pulse sequence design.

REFERENCES

[1] H. Breuer and F. PetruccioneThe Theory of Open Quantum Systems,
Oxford University Press; 2007.

[2] J.-S. Li, N. Khaneja, Ensemble Control of Bloch Equations, IEEE
Trans. Autom. Control, vol. 54, 2009, pp. 528-536.

[3] N. Khaneja, T. Reiss, B. Luy, S. J. Glasser, Optimal control of spin
dynamics in the presence of relaxation,J. Magn. Reson., vol. 162,
2003, pp. 311-319.

[4] N. Khaneja, B. Luy, and S. J. Glaser, Boundary of quantum evolution
under decoherence,Proc. Natl. Acad. Sci. USA, vol. 100, 2003, pp.
13162-13166.

[5] G. Lindblad, On the generators of quantum dynamical semigroups,
Commun. Math. Phys., vol. 48, 1976, pp. 199-130.

[6] R. R. Ernst, G. Bodenhausen, A. Wokaun,Principles of Nuclear
Magnetic Resonance in One and Two Dimensions, Clarendon Press,
Oxford; 1987.

[7] M. Goldman,Quantum Description of High-Resolution NMR in Liq-
uids, Clarendon Press, Oxford; 1988.

[8] J.-S. Li, J. Ruths, and D. Stefanatos, A pseudospectral method for
optimal control of open quantum systems,J. Chem. Phys., vol. 131,
2009, pp. 164110.

[9] G. Elnagar, M. A. Kazemi, and M. Razzaghi, The pseudospectral
Legendre method for discretizing optimal control problems, IEEE
Trans. Autom. Control, vol. 40, 1995, pp. 1793-1796.

[10] I. Ross and F. Fahroo, ”Legendre pseudospectral approximations of
optimal control problems”,in New Trends in Nonlinear Dynamics and
Control, edited by W. Kang et al., Springer, Berlin, 2003, pp. 327-342.

[11] F. Fahroo and I. Ross, Costate estimation by a Legendre pseudospectral
method,J. Guid. Control Dynam., vol. 24, 2001, pp. 270-277.

[12] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang,Spectral
Methods, Springer, Berlin; 2006.

[13] G. Szego,Orthogonal Polynomials, American Mathematical Society,
New York; 1959.

[14] J. Boyd,Chebyshev and Fourier Spectral Methods, Dover Ed. 2, New
York; 2000.

[15] B. Fornberg,A Practical Guide to Pseudospectral Methods, Cam-
bridge University Press, New York; 1998.

[16] S. Smith, Lebesgue constants in polynomial interpolation, Ann. Math.
Informaticae, vol. 33, 2006, pp. 109-123.

[17] P. Williams, A Gauss–Lobatto quadrature method for solving optimal
control problems,ANZIAM, vol. 47, 2006, pp. C101-C115.

[18] D. Gottlieb, Y. Hussaini, S. Orszag, ”Theory and applications of
spectral methods”,in Spectral Methods for Partial Differential Equa-
tions, edited by R. Voigt, D. Gottlieb, and M. Y. Hussaini, SIAM,
Philadelphia, 1984, pp. 1-117.

[19] J.-S. Li, N. Khaneja, Control of inhomogeneous quantumensembles,
Phys. Rev. A, vol. 73, 2006, pp. 030302.


