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Control Configuration Design for a Class of Structural Bilinear Systems

Supratim Ghosh and Justin Ruths

Abstract— Analysis of structured systems has opened up
the potential to understand the control properties of large-
scale systems modeled as networks. Networks present novel
questions to control theory because the interchangeability of
nodes means that any subset could be controlled. In contrast,
classic control systems have prescribed connections between
controls and states. We present an algorithm to determine the
structure of the input connectivity for single-input rank-one
structured bilinear systems, which is analogous to designing
the control configuration, or placement, of controls on edges in
the network. In particular, we develop the control configuration
with a minimum number of new interconnections (with respect
to a cacti representation of the graph). These controls become
the weights of certain edges in the network representation of
the bilinear system.

I. INTRODUCTION

The notion of structured control systems was developed
so that the fundamental properties of controllability and
observability could be generalized to system forms, or struc-
ture, rather than specific instances of that structure [1]. For
example two machines may have the same parts and same
assembly, but may differ by parameter values (stiffnesses,
spring constants, drag coefficients), however, we would like
to speak about the properties of this family of systems rather
than each individual member in the family in isolation.

More recent work has leveraged structural control theory
to study large scale systems, modeled as networks [2],
[3]. These studies were motivated by the computational
advantages offered by structural analysis over classic control
theory. Real-world networks often have thousands or millions
of nodes (states) and computing the Kalman rank condition
on a linear system of that size is not scalable. At the same
time, many real-world systems are modeled as networks
because we lack the information to characterize their full
dynamics. Even the weights that give the proportionality
of connection between states is often unknown, therefore,
tools like structural control are needed in order to study the
controllability of systems in the presence of such ambiguity
in parameter values.

The overwheliming majority of the work on structured
systems has focused on linear systems [1], [4]-[7]. In the
context of real-world networks, linear system models assume
that exogenous controls manipulate the system. However, in
some applications, it is not realistic to assume that we can
have direct influence over the state of a given node; however,
we may have the ability to manipulate the rate at which
the nodes interact. For example, in cellular biochemical
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networks, we are largely unable to directly change the
concentrations of protein within the cell, since medical drugs
typically target receptors on the cell wall, which instead
up- or down-regulate the expression of proteins in the cell.
Importantly, we are effecting the rate at which processes
happen, rather than directly effecting the states. A bilinear
model of control permits us to capture this by effectively
placing controls as the edge weights on some links in the
network representation of the system.

Bilinear systems are a class of nonlinear systems that
are jointly linear in the state and input dynamics. In other
words, the system dynamics are linear in state for fixed
input and linear in input for fixed states. Controllability and
observability for classes of unstructured bilinear systems has
been analyzed in for e.g., [8]-[13] - the most general and
approachable of which involve the controllability of single-
input, rank-one bilinear systems. Observability of structured
bilinear systems was discussed in [14], [15], though note that
because the nonlinearity of bilinear systems is induced by the
control, observability of bilinear systems does not encounter
the effects of the nonlinearity. Our work here and recently
presented is the first discussion of structural controllability
of bilinear systems [16]. In [16], given the sparsity patten of
system matrices for a single input bilinear system with input
matrix of rank one, we developed the algebraic and graph-
theoretic conditions required for structural controllability.
We showed that structural controllability of bilinear systems
depends on two conditions: structural controllability and
observability of an associated linear system obtained from
a decomposition of the original system and the existence of
walks of certain lengths in the associated system graph.

In this paper we will answer the converse question of
control configuration design: to determine the minimal set
of controlled edges to be added to a network to guarantee
structural controllability, respecting the single-input rank-
one constraint. Because most classic control problems have
readily known input locations (e.g., lever points, actuators)
the notion of control configuration design is trivial in these
cases. The recent work with large-scale networks has in-
troduced the importance of control configuration design in
linear networks by selecting the nodes in the network to
recieve exogenous input [2], [3]. We present the necessary
background and theoretical extensions to build an algorithm
for control configuration design for single-input rank-one
bilinear systems.

II. BACKGROUND

The system under investigation is a bilinear discrete-time
system with a single input. Mathematically speaking, we
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focus our attention on the following class of systems:

x(t+1) = Ax(t) + u(t)Bx(t), (1)

where x(t) € R™ and u(t) € R represent the state and
the external control input to the system, respectively. The
matrices A = [a;;] ,B = [b;;] € R"™" are structured
matrices; i.e., their entries are either fixed zeroes or free
(independent) parameters, which we denote in this paper
using * [1], [4], [16]. The objective in this paper is to design
a structured matrix B for a given A with a minimum number
of nonzero entries such that the pair (A, B) is structurally
controllable. As in [8], [9], [12], [16], the matrix B is
constrained to have a generic rank of at most one. The
rationale for this constraint is simply that suitable algebraic
conditions do not exist for any more general systems. How-
ever, we do observe that many meaningful and practical
applications can be captured by such a form. Moreover,
we anticipate that studying the structural controllability of
single-input bilinear systems will help to lend deeper insight
into the non-structured controllability of multi-input bilinear
systems, which would encompass an even broader class of
applications. In the rank-one case, B can be expressed as
the product ch™ where c,h € R, so the state equation (1)
becomes

x(t +1) = Ax(t) + u(t)ch™x(t). (2)

Structured systems naturally admit an alternative rep-
resentation as directed graphs. Furthermore, representing
systems such as (2) as graphs often leads to more intuitive
explanations, algorithms, and proofs for properties of such
systems. The structured matrix A defines a directed graph
with n nodes and where the interconnections between the
nodes are given by the matrix sparsity pattern. We will call
G(A) = (Va,Ea), with vertex set Vo = {z1,...,z,}, the
directed graph defined by the structured matrix A. Given
the edge set £a, having an interconnection from node z; to
x; is equivalent to (z;,x;) € €A or a;; # 0 (note we use
the # in the structural sense that, in this case, a;; is not a
fixed zero). In a specific realization of parameter values (non-
structured matrices) the values a;; represent the edge weights
of the graph from node z; to ;. Note that the graph G(AT)
is obtained from G(A) by simply reversing the direction
of edges. The matrix B denotes the presence of controlled
edges in the network, which represent links whose edge
weights can be controlled over time. In a specific realization
of parameter values, a non-zero entry b;; implies an edge
weight value of b;;u(t) = c;h;u(t) from node x; to ;. The
rank-one constraint on B implies that these controlled edges
have some special structure. In the simplest case, this could
take the form of controlled edges leaving only from one node
or entering only one node, however, the rank-one constraint
can take on a variety of other forms. Therefore, in terms of
the graphical interpretation of (2), our goal is to select the
fewest number of controlled edges in the network so that the
overall system becomes controllable.

A. Structural Controllability of Bilinear Systems

The objective of this paper is to design structured vectors
c and h with a minimum number of non-zero entries
for a given A such that the structured triplet (A, c,h) is
controllable.

Definition 1: A system of the form (2) described by
(A, c,h) is said to be structurally equivalent to another triple
(A, c, fl) if there is a one-to-one correspondence between the
locations of zeroes and free parameters of A and A, ¢ and
¢, and h and fl, respectively.

Definition 2: A structured system (A, c,h) described by
(2) is said to be structurally controllable if there exists a
triplet (A, ¢, h) that is structurally equivalent to (A, c,h)
and is controllable.

The result for structural controllability of rank-one single-
input discrete-time bilinear systems can be presented both
in terms of structured linear algebra and in terms of graph
theory. Reducibility effectively checks to ensure that all
nodes can be reached from the controls, either directly or
indirectly.

Definition 3: A structured matrix pair (A, B) is said to
be reducible if and only if there exists a permutation matrix
P such that (A, B) satisfies:

A O 0
Ao Agal’ By|"

Using a decomposition technique similar to the one stated
in [8], we define a linear system associated to the bilinear
system, which is most intuitively understood as a graph. The
overall augmented directed graph of the system described by
(2) using the triplet (A, c,h) can be defined as follows: the
vertex set V = Va U {a} U{y} where @ (the pseudo-input)
and ¢ (the pseudo-observation) are the vertices whose con-
nections to and from Va are given by c and h, respectively.
The edge set is the union of three sets: &€ = o U & U &,
such that (@, x;) € & if and only if ¢; # 0, where ¢; denotes
the j entry of c, and (z;,7) € &, if and only if h; # 0,
where h; denotes the i" entry of h. In bilinear systems,
controllability requires the simultaneous controllability and
observability of the associated linear system. The pseudo-
input and pseudo-observation are the two “halves” of each
controlled edge: h; # 0 and c¢; # O implies that there is an
edge from x; to 4 and from @ to x;, respectively, but also
means that there is a controlled edge in the bilinear system
from z; to x;.

A walk W in a graph is a sequence of nodes and edges
such that the begin vertex of an edge is the end vertex of the
edge preceding it. If none of the vertices are repeated, the
walk is called a path, otherwise in general vertices may be
repeated in a walk. The number of edges in a walk (path)
is called its length. A walk (path) is said to be closed if its
begin and end vertices are the same. Two walks (paths) are
called disjoint if there vertex sets are disjoint. A closed path
is called a cycle. Paths, walks, and cycles can be written as
either xg — 1 — -+ — x} or (zg,Z1,...,Tk). A path is
called wu-rooted (y-topped) if @ (y) is the begin (end) vertex
of the path. A collection of mutually disjoint u-rooted (y-

PTAP = PTB =
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topped) paths is called a u-rooted (y-topped) path family.
Also a walk or a collection of walks is said to cover all the
vertices in a set S if each of those vertices are a part of the
walk or the collection of walks. Let V; C Va denote the set
of nodes which have a direct edge to ¢; ie., Vy = {z; €
Va: (2;,7) € En}. Denote by Wy 5 the set of all walks
from 4 to all the nodes in Vy.

Lemma 1: [16] Consider the bilinear system (2) described
by (A, c,h). The following are equivalent:

1) The system (2) is structurally controllable.

hT
(A,c) and (AT, h) are both irreducible.
(b) The greatest common divisor of I equals one where
I={j:hTAi"lc #£0,7=1,...,n°}

3) (a) In G the set of all the paths from @ to i cover all the
vertices in Va and there exists a disjoint union of
u-rooted and correspondingly y-topped path family
and cycle family that covers all the state vertices.

(b) There exists a collection of walks of coprime
lengths in Wy,_ 5.

Therefore, in either case, three conditions must be sat-
isfied. The rank condition is equivalent to requiring only
a single control, as we will see in the next section, so it
is relatively trivially satisfied in the single-input case. The
second is the reducibility condition, or that all nodes must
be reached by the input and can reach the observation, since
without such visibility from/to the input/output there is no
hope for controllability. Finally the gcd condition must be
satisfied, that at least two coprime walks must be found in
the network.

2) (a) The generic rank of [A :j equals n + 1 and

III. THEORY

This section contains the additional theory required to
compose the algorithm to find a minimum number of entries
in B for (2) to be rendered controllable.

The cactus is a specialized graph concept used to concisely
describe (and find) the u-rooted and y-topped path/cycle
families that cover the state vertices. A stem is a path in
the graph and a bud is an cycle with a distinguished edge
that connects a node of a stem to a node in the cycle.
A cactus of the graph is composed of at most one stem
and the attached buds and any number of disjoint (non-
bud) cycles. A cacti is a collection of mutually disjoint
cactus subgraphs. Importantly, cacti can be obtained using
a maximum matching algorithm, which can be solved in
polynomial time [2], [17]. Although the maximum matching
result is not unique, it can be used as an efficient method
to construct a family of paths and cycles from which we
can then construct a minimum number of connections to
the control and observation, thereby creating the wu-rooted
and y-topped path/cycle families required for controllability.
In fact, part 3a of Lemma 1 is equivalent to saying that
the augmented graphs for G(A,c) and G(A™ h) are each
spanned by a cactus.

As we will see later, the number of controlled edges we
add will be minimal with respect to the particular realization

of the maximum matching (equivalently the particular cacti
formed from the maximum matching). Because the maxi-
mum matching (cacti) is not unique, it may be possible to
find a matching (cacti) that requires fewer controlled edges
than another. As will be noted later, this will depend on the
number and location of cycles created in the matching (cacti).

A graph G is said to possess a dilation if for a subset S
of vertices, the set T'(S) of vertices incident to any of the
elements in S is such that |T'(S)| < |S|. We now define
the concept of an atomic dilation which helps us locate the
nodes which need to be connected to controls.

Definition 4: A set S C V4 is said to possess an atomic
dilation if S contains a dilation, but no proper subset of S
contains a dilation.

It is stated in [18] that a dilation in a graph is equivalent
to a rank deficiency in the structured adjacency matrix of
the graph. We present a proof of a related statement which
relates the rank deficiency to the existence and unicity of
atomic dilations.

Lemma 2: For each atomic dilation set S, we have
T(S)| = [S] - 1.

Proof: Assume S contains an atomic dilation. By
definition, then, |T'(S)| < |S|. Assume |T'(S)| < |S| — 2.
Note that 7'(S) contains all the nodes which have edges
incident to any node in S. Now consider a new set S formed
by removing a node (any node) from S so that |S| = |S] —1.
Let T'(S) be the corresponding set for S. Since S C S, we
have T'(S) C T(S), and thus |T(S)| < |T(S)| < |S]| -2 <
|5' |. Thus, S contains a dilation, which is a contradiction. B

In prior work, our proof indicates that for the system in
(2) to be controllable, the structured matrix A must be of at
least rank n — 1 [16]. We use this fact now, which is due to
the imposed single-input rank-one constraint, to establish a
connection between the rank deficiency of A and dilations.
In the following, we will denote by A|g the set of rows of
corresponding to the indices in S C V4.

Lemma 3: The generic rank of an n X n structured matrix
A equals n — 1 if and only if the associated directed graph
G(A) has a unique atomic dilation.

Proof: We will only present a sketch of the proof. First,
assume that G(A) contains a unique atomic dilation set S C
Va. Using Lemma 2, one can then conclude that A|g has
at most |.S| — 1 nonzero columns and thus, a generic rank of
at most |S| — 1. If S is a singleton, then A|s = 0, and this
immediately proves that the generic rank of A|s = 0 = |S|—
1. Assume S contains more than one element and consider
a set {z;} C S. Since {x;} does not possess a dilation,
the " row must have at least one nonzero entry. Since z;
was arbitrary, every row in S contains at least one nonzero
entry, and A |g contains at least one nonzero column. Since
the number of nonzero columns of A|g is bounded from
above by |S| — 1 and below by 1, if |S| = 2, A|s must
have exactly one nonzero column and, therefore, possesses
a generic rank of one. However, if |S| > 2, one can then
consider a proper subset {x;,2;} C S such that z;,z; € S.
Since this set does not contain a dilation, there will be at least
two nonzero columns in A|{zi@j} in addition to the fact that
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the z!" and :n;h rows contain at least one nonzero entry each.
This implies that the generic rank of Al(,, ..} equals 2. An
induction argument then gives us that the generic rank of
every subset R of S having |S|—1 elements is exactly |.S|—1.
Thus, the generic rank of Alg is equal to |S| — 1. Using
a similar argument, one can then deduce that the generic
rank of Aly,\s equals [Va \ S|. Also, any proper subset of
rows of Alg is linearly independent to the rows in Aly,\g
(otherwise that will contradict with the unicity of S). This
implies that the generic rank of A is n — 1.

On the other hand, assume that the generic rank of A
is n — 1. Identify the smallest set S C Va such that A|g
contains linearly dependent rows but the rows in any of the
proper subsets of S are linearly independent. If S = {x;}
for some x; € Va, then obviously A|s = 0 and hence, S
is an atomic dilation. Else, consider a set {z;} C S. Since,
Al is linearly independent, the xth row contains at least
one nonzero entry. Again an induction argument shows that
no proper subset of S contains a dilation. In particular every
subset R C S of |S| —1 entries has at least |S| — 1 nonzero
columns. In other words, |T(R)| > |R| > |S| — 1. This
coupled with the fact that A|g contains a set of linearly
dependent rows then gives us that |[T'(S)| = |S| — 1. So, S
possesses an atomic dilation. One can then use a set-theoretic
argument to show that S is unique since if there are two
atomic dilations S and 7', then S U T will have two atomic
dilations and correspondingly the generic rank of A would
be at most n — 2 leading to a contradiction.

|

Remark 1: When the graph has a single dilation, we also
observe that there can be only one cactus (i.e., a single u-
rooted path/cycle family covers all the vertices and a single
y-topped path/cycle family covers all the vertices) [1], [4],
[5]. This implies that in a graph with one dilation, there is at
most one stem with any number of corresponding buds and
cycles. The implication does not go the other way, however,
because if A has full generic rank and there is no dilation
in G(A), there is still considered to be one cactus, but
composed entirely of cycles (i.e., no stem or buds).

IV. ALGORITHM

Using the established background in Section II and the
new observations made in Section III, we now synthesize an
algorithm to design the control configuration for the bilinear
system (2) to render it controllable. The flowchart in Fig. 1
depicts the high-level sequence of the algorithm. The input to
the algorithm is A and the outputs are c and h. The entries of
the vectors ¢ and h are initially set equal to zero. Recall that
connecting @ to x; implies setting ¢; to be a free parameter;
i.e., ¢; # 0. Similarly, connecting z; to ¥ is equivalent to
making h; a free parameter.

1) Build the cacti of G(A): Using a maximum matching
algorithm, generate the cacti of G(A). If more than
one cactus is created, by Remark 1 this implies that the
rank of A is less than n — 1. As mentioned previously,
the generic rank of A must be at least n — 1 for a
rank-one single-input to potentially make the system
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compute cacti of G(A):
Sa, Ba, Za

|

compute cactus
of G(AT):
Sat, Bat, Iar

l

connect u to the
bottom (z;) and §
L from the top (z;) of Sa ]

I

l

' N
Ta = 0 CeBA;(rZeIAT Cen
Iar =0 || ¢ cTp.C € Bar Gt ]
satisfy l
€ C,
. ged with a(
coprime remainder ade (u:xk)
walks? (zk, 9)

theorem

yes satisfy

covering
condition

Fig. 1. A high level flow chart of the algorithm.

add (z;,9)

controllable. Therefore, only continue if there is a single
cactus. As explained earlier, the cactus will have a stem
with corresponding buds, and/or isolated cycles. Let Sa
denote the stem of the cacti, B be collection of buds,
and Za be the collection of isolated cycles.

Build the cactus of G(A™): Obtain the cactus of
G(A") from the cactus of G(A). Although we could
generate the cactus of G(AT) directly using the max-
imum matching algorithm on the graph with edges
reversed, the following method uses the fact that there
is a single cactus for G(A) and for G(A™T) in order
to maintain the original buds and isolated cycles: Ba U



3)

II

I

Ia = Bar UZprr.

o Identify the stem: Reverse the direction of edges
in the stem to obtain the stem Spr.

« For each cycle, determine if it is a bud or cycle:
For each cycle C in Ba and Za, check whether
there exists a distinguished edge, in G(A™T), from
any node in Spr to any node in C. If a distinguished
edge exists, C € B, i.e., C is a bud in the cacti of
G(A™). If there is no distinguished edge C € T,
i.e., C is an isolated cycle in the cacti of G(AT).

Connect controls: If the cactus of G(A) has a stem, let
its length be £ — 1 and connect @ to the base node (say
x;) and y from the top node (say x;) of the stem, i.e.,
set c; and h; to be free parameters. Proceed according
to one of the following cases:

No isolated cycles: Since all nodes are contained in
the stem and/or the buds connected from the stem, con-
necting u and y as above guarantees that all nodes are
reachable from « and can reach g. To check the coprime
walk condition, let I = {k: a,’ffl, ¢=1,...,n%} where
al;" denotes the (i, ) entry of AF=1.If ged(I) = 1,
then the condition is naturally satisfied. Otherwise add
an edge from the bottom node of the stem, x;, to g.
This inserts a controlled self-loop at x;: 4 — x; — ¥,
which automatically satisfies the coprime walks since
the ged(¢,1) = 1 (¢ is the length of the walk from @ to
the neighbor set of §, V). Note that this procedure also
addresses the case when the cactus only has a stem and
no buds.

Same isolated cycle in both cacti: If there is at least
one cycle that is isolated in both cacti, i.e., C € Za and
C € T, choose any node (say ) of such a cycle and
connect @ to xj and xj, to y. This adds a controlled self-
loop in the system which again immediately satisfies the
gcd condition. To satisfy the covering condition, also
connect % to any node in each of the rest of the isolated
cycles Za and connect g to any node in each of the rest
of the isolated cycles in Z5r. Note that this procedure
also deals with the case when the cactus does not have
a stem, in which case all the cycles are the same in both
cacti.

Bud becomes isolated cycle: Consider first the case
where the cycle is a bud in the cactus of G(A), C €
Ba, but is an isolated cycle in the cactus of G(AT),
C € Tpr. Let k < { be the distance from % to the end
vertex (say x,,) of the distinguished edge connecting the
stem Sa to C and c be the cycle length.

Obtain the smallest remainder r such that [{ — 1 — k| =
q - ¢+ r. Starting with x,, as the 0™ vertex, connect the
r" vertex in C to §j. Note that ged (¢, k + (¢-c+71)) =
ged (¢, £ £1), where the length k+ (¢-c+7) is attained
from the walk from % to x, (k), around the bud ¢ times
(q - ¢), and partially around again to the r™ node (r),
which is part of the neighbor set of §, V.

To satisfy the covering condition, also connect 4 to any
node in each of the rest of the isolated cycles Za and

connect y to any node in each of the rest of the isolated
cycles in Za.

The case where C is a bud in the cactus of G(AT),
i.e., C € Bar and a cycle in the cactus of G(AT), i.e.,
C € I is treated identically, however, the roles are
reversed of @ and g.

Our goal in designing the vectors ¢ and h is to satisfy
the controllability and observability of the linear system and
the gcd condition. The former can be done by connecting u
to (y from) the isolated cycles in the cacti and the dilation,
which is the bottom (or top) of the stem. Assume the number
of cacti components; i.e., stem (if present) plus the number
of isolated cycles in G(A) is equal to n.. Similarly, let the
number of cacti components in G(AT) be ny. Hence, at
minimum n. edges from @ and nj, edges to y are needed to
guarantee controllability and observability of the associated
linear system. However, due to the rank-one constraint on
B, it is also evident that neny is the minimum number of
controlled edges (or equivalently, the number of non-zero
entries in B) required to guarantee overall controllability of
the bilinear system. What we find is that bilinear systems are
relatively easy to control, in the sense that most of the cases
above attain this minimum even when the gcd condition is
tested. The exception is Case I, in which only a single extra
controlled edge (a self edge) may be required to satisfy the
coprime walks. Note that for Case I the number of required
controlled edges is either 1 or 2, so even in this case the gcd
condition does not cause significant effect on the control
configuration.

Remark 2: It was mentioned briefly in the preceding sec-
tion that the maximum matching algorithm does not yield a
unique solution, hence the the cactus found in the first step
of our algorithm has some degeneracy [2], [17]. In particular,
the numbers n. and n; depend on the number of isolated
cycles in the cactus and, therefore, the number of controlled
edges placed in the network depends on the structure of the
resulting cactus. While the problem of obtaining the cacti
for a directed graph using maximum matching is solvable
in polynomial time, the problem of enumerating all the
potential cacti of a given graph is known to be NP-hard - in
particular, combinatorial in the number of dilations. Ideally
we would like a maximum matching algorithm that returns
the fewest number of isolated cycles, since this will make n.
and ny, smaller. Fortunately, Lemma 3 indicates that there is
a single, unique dilation in this context, so enumerating the
matchings is tractable. However, it is a worthy point to make
for extensions of this work that lift the rank restriction on
A.

Remark 3: We have outlined the procedure for assigning
controlled edges for the simplest types of cacti, in which
buds only occur off of (with distinguished edges coming
from) the stem. In general, however, it is possible for buds
to occur off of other cycles - both buds and isolated cycles
- and for there to be chains of such buds off of buds. The
placement of controlled edges in these cases follows the same
logic - and yields the same results - as we have already
described, however, the arithmetic and notation becomes
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(a) (b)

1
@ |
1

(e)

Fig. 2. The 10 node graph discussed in Example 1, showing (a) the original graph (b) the cactus of G'(A) with stem Sa bolded (c) the cactus of G(AT)
with stem S 7 bolded (d) the resulting control augmented graph of the associated linear system (e) the resulting control augmented graph of the original

system. In all diagrams, dashed arrows indicate edges added to the graph.

more cumbersome. In light of clarity and space constraints,
we have omitted these details.

Remark 4: Self-loops can play a dramatically simplifying
role in the control of bilinear systems. Once the conditions
of controllability and observability of the associated linear
system are satisfied, the presence of a self-loop (either using
the existing or controlled interconnections) automatically
satisfies the gcd condition. Suppose there exists a self-loop
on node k; i.e., axr # 0. The controllability and observability
grant that a path exists from 4 to § in the augmented system
graph via node k. Adding the self-loop to this path gives
a walk of length one more than the original path, which
clearly satisfies the gcd condition. For the situation where
bpr = cxhr #Z 0, we have 1 € [ which satisfies the gcd

condition automatically.

Remark 5: We briefly explore the computational complex-
ity of the algorithm, in particular when checking the gcd con-
dition is required (Case I). As mentioned in [17] the number
of steps required for obtaining the cacti represenation via
maximum matching is O(n°/2). Obtaining cacti of G(AT)
from the cacti of G(A) involves checking whether every
cycle in the cactus for G(A) is a bud or isolated cycle in
the cactus for G(A™), requiring at most n?/4 operations.
Checking for the lengths of stem and cycles involves O(n)
operations giving us a total complexity of O(n5/ 24n24n) =
O(n®/?). In Case I we also need to check for coprime walks,
which effectively requires matrix multiplication of A up to
the power n2. The most efficient matrix multiplications run
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Fig. 3.

(d)

The 9 node graph discussed in Example 2 showing (a) the original graph (b) the cactus of G(A) with input connectivity shown (c) the cactus of

G(AT) with output connectivity shown (d) the resulting control augmented graph of the original system. In all diagrams, dashed arrows indicate edges

added to the graph and bold arrows indicate the stem of a cactus.

in O(n?3), so computing these powers to n? is O(n*3).
Remark 4 provides a convenient shortcut if self-loops exist in
the network. Note that to guarantee the controllability of the
bilinear system in Case I without checking the gcd condition,
only one additional controlled edge is required. It may be
worthwhile, then, to compare the cost of the computation
time related to the gcd condition with the cost of inserting
another controlled edge in the network.

V. EXAMPLES

In this section we will present two illustrative examples
to demonstrate our algorithm.

A. Example 1

Consider the 10 node bilinear network as shown in Fig. 2.
Decomposing the graph G(A) into its cacti using maximum
matching yields the following elements: a stem Sa com-
prising of the nodes (x1, 2,3, z4) and two buds namely,
Cl = (x57x6,:v7, l‘g) and CQ = ($9,$10).

The cactus for G(AT) is obtained from the cactus of
G(A). While the edge (x2,x5) connects the bud C; to the
stem Sa, a different distinguished edge (z6,x3) connects
C1 to Spr. Therefore, the cycle C; is a bud in both the
cacti. The cycle Cy, however, has no distinguished edge to
Sar and becomes an isolated cycle in the cacti for G(A™T).
Hence, the cactus for G(AT) contains one bud C; € Bar
and one isolated cycle Co € Tt in addition to the stem
SAT = ($4, T3, T2, .131).

This network is an example of Case IIl. Therefore, to
control the linear system associated to G(A), an edge must

be added from the pseudo-input @ to z;. The edge (@, 1)
connects all the nodes from u since there are no isolated
cycles. To observe the linear system it is necessary to obtain
observations from both the top of the stem Sa (from node
x4) and from one of the nodes in Cs. There will be two edges
to y and one to u, yielding two controlled edges.

There is ambiguity in which node in Cy is connected to
Y, however, we can use the gcd requirement to help make
this choice. The length of the stem is 3, therefore, £ = 4 is
the distance from u to x4 € V; along the stem. The distance
k =4 is the length from @ to xg and ¢ = 2 is the length of
cycle Cy. Therefore, [ — 1 —k|=1,s0¢g=0and r =1
making q-c+r = {+1 = 5. Therefore, we add the controlled
edge from Cy to g at the r™ node of the cycle, x19. The
walk from 4 to the r = 1 node of the cycle, x19 € Vy, is of
length 5, which is coprime with ¢ = 4. The bilinear network
becomes controllable with just two controlled edges, namely
(z4,21) and (219, 21).

B. Example 11

Consider the 9 node network as shown in Fig. 3. The
cactus of G(A) is composed of a stem Sp = (21, z2, T3, x4)
and two buds C; = (x5,x6) and Cy = (x7,xs,x9) attached
to the stem by the edges (z1,x5) and (x2,x7). Similarly,
in the cactus for G(A™), the cycles C; and Cy are also
connected to the stem by the edges (zg,z4) and (xg,x2),
respectively.

Thus, a single edge (@, x1) achieves controllability for the
associated linear system, and a single edge (x4, ) guarantees
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observability of the associated linear system.

We now check the existence of coprime walks from u
to Vy = {z4}. Multiplying the powers of A, we observe
that a3, # 0 and a}; # 0. These correspond to the paths
(U, 1, x2,x3,24) and (4,1, T2, T7, T8, Tg, T7, T8, Tg, T4)
which are of coprime lengths, 4 and 9 respectively. Thus,
only one controlled edge (x4, x1) is sufficient to control the
bilinear network. We note that if the cost of checking the
coprime paths is prohibitive (e.g., for a larger network) we
could add an extra controlled self-loop (x1,¥) to guarantee
controllability without needing to check the gcd condition.

VI. CONCLUSIONS

We presented an algorithm to selectively add controlled
edges to a bilinear network to render it structurally control-
lable. This process invovles decomposing a given network
into a cactus, guaranteeing controllability and observability
of the associated linear system, and guarantee the existence
of coprime walks in the network. Here we consider single-
input rank-one discrete time bilinear systems, however, we
anticipate that the intuition gained from the structural analy-
sis of controllability will help to generalize the known results
for controllability of structured and non-structured bilinear
systems.
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